MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 686
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 481 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 684 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397
This theorem is referenced by:  funopsn  7020  oeoelem  8429  qsdisj  8583  faclbnd4lem4  14010  sumrb  15425  prodrblem2  15641  asclpropd  21101  tx2cn  22761  ustuqtop5  23397  iocopnst  24103  cmetcaulem  24452  dvaddbr  25102  dvmulbr  25103  tglineeltr  26992  wlkp1lem6  28046  upgr1wlkdlem2  28510  grplsm0l  31591  poimirlem17  35794  poimirlem20  35797  rngonegmn1l  36099  qsdisjALTV  36728  pwspjmhmmgpd  40267  icccncfext  43428  isomuspgrlem2c  45282
  Copyright terms: Public domain W3C validator