![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version |
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
Ref | Expression |
---|---|
mpidan.1 | ⊢ (𝜑 → 𝜒) |
mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpdan 686 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: funopsn 7182 oeoelem 8654 qsdisj 8852 faclbnd4lem4 14345 sumrb 15761 prodrblem2 15979 pwspjmhmmgpd 20351 asclpropd 21940 tx2cn 23639 ustuqtop5 24275 iocopnst 24989 cmetcaulem 25341 dvaddbr 25994 dvmulbr 25995 dvmulbrOLD 25996 tglineeltr 28657 wlkp1lem6 29714 upgr1wlkdlem2 30178 grplsm0l 33396 ressply1invg 33559 poimirlem17 37597 poimirlem20 37600 rngonegmn1l 37901 qsdisjALTV 38571 mplmapghm 42511 naddcnfid1 43329 icccncfext 45808 |
Copyright terms: Public domain | W3C validator |