| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7086 oeoelem 8523 qsdisj 8728 faclbnd4lem4 14222 sumrb 15639 prodrblem2 15857 pwspjmhmmgpd 20232 asclpropd 21823 psdmvr 22073 tx2cn 23514 ustuqtop5 24150 iocopnst 24854 cmetcaulem 25205 dvaddbr 25857 dvmulbr 25858 dvmulbrOLD 25859 tglineeltr 28595 wlkp1lem6 29641 upgr1wlkdlem2 30109 grplsm0l 33359 ressply1invg 33523 poimirlem17 37636 poimirlem20 37639 rngonegmn1l 37940 qsdisjALTV 38611 mplmapghm 42549 naddcnfid1 43360 icccncfext 45888 isubgr3stgrlem7 47976 pgnbgreunbgrlem3 48122 pgnbgreunbgrlem6 48128 |
| Copyright terms: Public domain | W3C validator |