![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version |
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
Ref | Expression |
---|---|
mpidan.1 | ⊢ (𝜑 → 𝜒) |
mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: funopsn 7168 oeoelem 8635 qsdisj 8833 faclbnd4lem4 14332 sumrb 15746 prodrblem2 15964 pwspjmhmmgpd 20342 asclpropd 21935 tx2cn 23634 ustuqtop5 24270 iocopnst 24984 cmetcaulem 25336 dvaddbr 25989 dvmulbr 25990 dvmulbrOLD 25991 tglineeltr 28654 wlkp1lem6 29711 upgr1wlkdlem2 30175 grplsm0l 33411 ressply1invg 33574 poimirlem17 37624 poimirlem20 37627 rngonegmn1l 37928 qsdisjALTV 38597 mplmapghm 42543 naddcnfid1 43357 icccncfext 45843 isubgr3stgrlem7 47875 |
Copyright terms: Public domain | W3C validator |