| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7102 oeoelem 8539 qsdisj 8744 faclbnd4lem4 14237 sumrb 15655 prodrblem2 15873 pwspjmhmmgpd 20213 asclpropd 21782 psdmvr 22032 tx2cn 23473 ustuqtop5 24109 iocopnst 24813 cmetcaulem 25164 dvaddbr 25816 dvmulbr 25817 dvmulbrOLD 25818 tglineeltr 28534 wlkp1lem6 29580 upgr1wlkdlem2 30048 grplsm0l 33347 ressply1invg 33511 poimirlem17 37604 poimirlem20 37607 rngonegmn1l 37908 qsdisjALTV 38579 mplmapghm 42517 naddcnfid1 43329 icccncfext 45858 isubgr3stgrlem7 47944 pgnbgreunbgrlem3 48081 pgnbgreunbgrlem6 48087 |
| Copyright terms: Public domain | W3C validator |