![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version |
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
Ref | Expression |
---|---|
mpidan.1 | ⊢ (𝜑 → 𝜒) |
mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 474 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpdan 677 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: funopsn 6679 oeoelem 7962 qsdisj 8107 faclbnd4lem4 13401 sumrb 14851 prodrblem2 15064 asclpropd 19743 tx2cn 21822 ustuqtop5 22457 iocopnst 23147 cmetcaulem 23494 dvaddbr 24138 dvmulbr 24139 tglineeltr 25982 wlkp1lem6 27029 upgr1wlkdlem2 27549 poimirlem17 34052 poimirlem20 34055 rngonegmn1l 34364 qsdisjALTV 34985 icccncfext 41028 isomuspgrlem2c 42743 |
Copyright terms: Public domain | W3C validator |