![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version |
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
Ref | Expression |
---|---|
mpidan.1 | ⊢ (𝜑 → 𝜒) |
mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 482 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpdan 686 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: funopsn 7146 oeoelem 8598 qsdisj 8788 faclbnd4lem4 14256 sumrb 15659 prodrblem2 15875 pwspjmhmmgpd 20141 asclpropd 21451 tx2cn 23114 ustuqtop5 23750 iocopnst 24456 cmetcaulem 24805 dvaddbr 25455 dvmulbr 25456 tglineeltr 27913 wlkp1lem6 28966 upgr1wlkdlem2 29430 grplsm0l 32544 ressply1invg 32689 gg-dvmulbr 35206 poimirlem17 36553 poimirlem20 36556 rngonegmn1l 36857 qsdisjALTV 37533 mplmapghm 41176 naddcnfid1 42165 icccncfext 44651 isomuspgrlem2c 46546 |
Copyright terms: Public domain | W3C validator |