Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version |
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
Ref | Expression |
---|---|
mpidan.1 | ⊢ (𝜑 → 𝜒) |
mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpdan 684 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: funopsn 7020 oeoelem 8429 qsdisj 8583 faclbnd4lem4 14010 sumrb 15425 prodrblem2 15641 asclpropd 21101 tx2cn 22761 ustuqtop5 23397 iocopnst 24103 cmetcaulem 24452 dvaddbr 25102 dvmulbr 25103 tglineeltr 26992 wlkp1lem6 28046 upgr1wlkdlem2 28510 grplsm0l 31591 poimirlem17 35794 poimirlem20 35797 rngonegmn1l 36099 qsdisjALTV 36728 pwspjmhmmgpd 40267 icccncfext 43428 isomuspgrlem2c 45282 |
Copyright terms: Public domain | W3C validator |