| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7120 oeoelem 8562 qsdisj 8767 faclbnd4lem4 14261 sumrb 15679 prodrblem2 15897 pwspjmhmmgpd 20237 asclpropd 21806 psdmvr 22056 tx2cn 23497 ustuqtop5 24133 iocopnst 24837 cmetcaulem 25188 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 tglineeltr 28558 wlkp1lem6 29606 upgr1wlkdlem2 30075 grplsm0l 33374 ressply1invg 33538 poimirlem17 37631 poimirlem20 37634 rngonegmn1l 37935 qsdisjALTV 38606 mplmapghm 42544 naddcnfid1 43356 icccncfext 45885 isubgr3stgrlem7 47971 pgnbgreunbgrlem3 48108 pgnbgreunbgrlem6 48114 |
| Copyright terms: Public domain | W3C validator |