Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version |
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
Ref | Expression |
---|---|
mpidan.1 | ⊢ (𝜑 → 𝜒) |
mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
4 | 2, 3 | mpdan 683 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: funopsn 7002 oeoelem 8391 qsdisj 8541 faclbnd4lem4 13938 sumrb 15353 prodrblem2 15569 asclpropd 21011 tx2cn 22669 ustuqtop5 23305 iocopnst 24009 cmetcaulem 24357 dvaddbr 25007 dvmulbr 25008 tglineeltr 26896 wlkp1lem6 27948 upgr1wlkdlem2 28411 grplsm0l 31493 poimirlem17 35721 poimirlem20 35724 rngonegmn1l 36026 qsdisjALTV 36655 pwspjmhmmgpd 40192 icccncfext 43318 isomuspgrlem2c 45170 |
Copyright terms: Public domain | W3C validator |