MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 689
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 480 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 687 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  funopsn  7143  oeoelem  8615  qsdisj  8813  faclbnd4lem4  14319  sumrb  15734  prodrblem2  15952  pwspjmhmmgpd  20293  asclpropd  21862  psdmvr  22112  tx2cn  23553  ustuqtop5  24189  iocopnst  24893  cmetcaulem  25245  dvaddbr  25897  dvmulbr  25898  dvmulbrOLD  25899  tglineeltr  28615  wlkp1lem6  29663  upgr1wlkdlem2  30132  grplsm0l  33423  ressply1invg  33587  poimirlem17  37666  poimirlem20  37669  rngonegmn1l  37970  qsdisjALTV  38638  mplmapghm  42546  naddcnfid1  43358  icccncfext  45883  isubgr3stgrlem7  47951
  Copyright terms: Public domain W3C validator