| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7143 oeoelem 8615 qsdisj 8813 faclbnd4lem4 14319 sumrb 15734 prodrblem2 15952 pwspjmhmmgpd 20293 asclpropd 21862 psdmvr 22112 tx2cn 23553 ustuqtop5 24189 iocopnst 24893 cmetcaulem 25245 dvaddbr 25897 dvmulbr 25898 dvmulbrOLD 25899 tglineeltr 28615 wlkp1lem6 29663 upgr1wlkdlem2 30132 grplsm0l 33423 ressply1invg 33587 poimirlem17 37666 poimirlem20 37669 rngonegmn1l 37970 qsdisjALTV 38638 mplmapghm 42546 naddcnfid1 43358 icccncfext 45883 isubgr3stgrlem7 47951 |
| Copyright terms: Public domain | W3C validator |