| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7076 oeoelem 8508 qsdisj 8713 faclbnd4lem4 14198 sumrb 15615 prodrblem2 15833 pwspjmhmmgpd 20241 asclpropd 21829 psdmvr 22079 tx2cn 23520 ustuqtop5 24155 iocopnst 24859 cmetcaulem 25210 dvaddbr 25862 dvmulbr 25863 dvmulbrOLD 25864 tglineeltr 28604 wlkp1lem6 29650 upgr1wlkdlem2 30118 grplsm0l 33360 ressply1invg 33524 mplvrpmmhm 33568 mplvrpmrhm 33569 poimirlem17 37677 poimirlem20 37680 rngonegmn1l 37981 qsdisjALTV 38652 mplmapghm 42589 naddcnfid1 43400 icccncfext 45925 isubgr3stgrlem7 48003 pgnbgreunbgrlem3 48149 pgnbgreunbgrlem6 48155 |
| Copyright terms: Public domain | W3C validator |