MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 689
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 480 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 687 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  funopsn  7120  oeoelem  8562  qsdisj  8767  faclbnd4lem4  14261  sumrb  15679  prodrblem2  15897  pwspjmhmmgpd  20237  asclpropd  21806  psdmvr  22056  tx2cn  23497  ustuqtop5  24133  iocopnst  24837  cmetcaulem  25188  dvaddbr  25840  dvmulbr  25841  dvmulbrOLD  25842  tglineeltr  28558  wlkp1lem6  29606  upgr1wlkdlem2  30075  grplsm0l  33374  ressply1invg  33538  poimirlem17  37631  poimirlem20  37634  rngonegmn1l  37935  qsdisjALTV  38606  mplmapghm  42544  naddcnfid1  43356  icccncfext  45885  isubgr3stgrlem7  47971  pgnbgreunbgrlem3  48108  pgnbgreunbgrlem6  48114
  Copyright terms: Public domain W3C validator