MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 688
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 482 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 686 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  funopsn  7146  oeoelem  8598  qsdisj  8788  faclbnd4lem4  14256  sumrb  15659  prodrblem2  15875  pwspjmhmmgpd  20141  asclpropd  21451  tx2cn  23114  ustuqtop5  23750  iocopnst  24456  cmetcaulem  24805  dvaddbr  25455  dvmulbr  25456  tglineeltr  27913  wlkp1lem6  28966  upgr1wlkdlem2  29430  grplsm0l  32544  ressply1invg  32689  gg-dvmulbr  35206  poimirlem17  36553  poimirlem20  36556  rngonegmn1l  36857  qsdisjALTV  37533  mplmapghm  41176  naddcnfid1  42165  icccncfext  44651  isomuspgrlem2c  46546
  Copyright terms: Public domain W3C validator