| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7123 oeoelem 8565 qsdisj 8770 faclbnd4lem4 14268 sumrb 15686 prodrblem2 15904 pwspjmhmmgpd 20244 asclpropd 21813 psdmvr 22063 tx2cn 23504 ustuqtop5 24140 iocopnst 24844 cmetcaulem 25195 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 tglineeltr 28565 wlkp1lem6 29613 upgr1wlkdlem2 30082 grplsm0l 33381 ressply1invg 33545 poimirlem17 37638 poimirlem20 37641 rngonegmn1l 37942 qsdisjALTV 38613 mplmapghm 42551 naddcnfid1 43363 icccncfext 45892 isubgr3stgrlem7 47975 pgnbgreunbgrlem3 48112 pgnbgreunbgrlem6 48118 |
| Copyright terms: Public domain | W3C validator |