MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 689
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 480 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 687 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  funopsn  7102  oeoelem  8539  qsdisj  8744  faclbnd4lem4  14237  sumrb  15655  prodrblem2  15873  pwspjmhmmgpd  20213  asclpropd  21782  psdmvr  22032  tx2cn  23473  ustuqtop5  24109  iocopnst  24813  cmetcaulem  25164  dvaddbr  25816  dvmulbr  25817  dvmulbrOLD  25818  tglineeltr  28534  wlkp1lem6  29580  upgr1wlkdlem2  30048  grplsm0l  33347  ressply1invg  33511  poimirlem17  37604  poimirlem20  37607  rngonegmn1l  37908  qsdisjALTV  38579  mplmapghm  42517  naddcnfid1  43329  icccncfext  45858  isubgr3stgrlem7  47944  pgnbgreunbgrlem3  48081  pgnbgreunbgrlem6  48087
  Copyright terms: Public domain W3C validator