MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 685
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 480 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 683 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396
This theorem is referenced by:  funopsn  7002  oeoelem  8391  qsdisj  8541  faclbnd4lem4  13938  sumrb  15353  prodrblem2  15569  asclpropd  21011  tx2cn  22669  ustuqtop5  23305  iocopnst  24009  cmetcaulem  24357  dvaddbr  25007  dvmulbr  25008  tglineeltr  26896  wlkp1lem6  27948  upgr1wlkdlem2  28411  grplsm0l  31493  poimirlem17  35721  poimirlem20  35724  rngonegmn1l  36026  qsdisjALTV  36655  pwspjmhmmgpd  40192  icccncfext  43318  isomuspgrlem2c  45170
  Copyright terms: Public domain W3C validator