| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpidan | Structured version Visualization version GIF version | ||
| Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.) |
| Ref | Expression |
|---|---|
| mpidan.1 | ⊢ (𝜑 → 𝜒) |
| mpidan.2 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| mpidan | ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpidan.1 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| 3 | mpidan.2 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 4 | 2, 3 | mpdan 687 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜃) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: funopsn 7090 oeoelem 8522 qsdisj 8727 faclbnd4lem4 14210 sumrb 15627 prodrblem2 15845 pwspjmhmmgpd 20254 asclpropd 21844 psdmvr 22103 tx2cn 23545 ustuqtop5 24180 iocopnst 24884 cmetcaulem 25235 dvaddbr 25887 dvmulbr 25888 dvmulbrOLD 25889 tglineeltr 28629 wlkp1lem6 29676 upgr1wlkdlem2 30147 grplsm0l 33412 ressply1invg 33578 mplvrpmmhm 33639 mplvrpmrhm 33640 poimirlem17 37750 poimirlem20 37753 rngonegmn1l 38054 qsdisjALTV 38784 mplmapghm 42722 naddcnfid1 43524 icccncfext 46047 isubgr3stgrlem7 48134 pgnbgreunbgrlem3 48280 pgnbgreunbgrlem6 48286 |
| Copyright terms: Public domain | W3C validator |