MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 689
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 480 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 687 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  funopsn  7168  oeoelem  8635  qsdisj  8833  faclbnd4lem4  14332  sumrb  15746  prodrblem2  15964  pwspjmhmmgpd  20342  asclpropd  21935  tx2cn  23634  ustuqtop5  24270  iocopnst  24984  cmetcaulem  25336  dvaddbr  25989  dvmulbr  25990  dvmulbrOLD  25991  tglineeltr  28654  wlkp1lem6  29711  upgr1wlkdlem2  30175  grplsm0l  33411  ressply1invg  33574  poimirlem17  37624  poimirlem20  37627  rngonegmn1l  37928  qsdisjALTV  38597  mplmapghm  42543  naddcnfid1  43357  icccncfext  45843  isubgr3stgrlem7  47875
  Copyright terms: Public domain W3C validator