MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpidan Structured version   Visualization version   GIF version

Theorem mpidan 688
Description: A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
Hypotheses
Ref Expression
mpidan.1 (𝜑𝜒)
mpidan.2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
Assertion
Ref Expression
mpidan ((𝜑𝜓) → 𝜃)

Proof of Theorem mpidan
StepHypRef Expression
1 mpidan.1 . . 3 (𝜑𝜒)
21adantr 480 . 2 ((𝜑𝜓) → 𝜒)
3 mpidan.2 . 2 (((𝜑𝜓) ∧ 𝜒) → 𝜃)
42, 3mpdan 686 1 ((𝜑𝜓) → 𝜃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  funopsn  7182  oeoelem  8654  qsdisj  8852  faclbnd4lem4  14345  sumrb  15761  prodrblem2  15979  pwspjmhmmgpd  20351  asclpropd  21940  tx2cn  23639  ustuqtop5  24275  iocopnst  24989  cmetcaulem  25341  dvaddbr  25994  dvmulbr  25995  dvmulbrOLD  25996  tglineeltr  28657  wlkp1lem6  29714  upgr1wlkdlem2  30178  grplsm0l  33396  ressply1invg  33559  poimirlem17  37597  poimirlem20  37600  rngonegmn1l  37901  qsdisjALTV  38571  mplmapghm  42511  naddcnfid1  43329  icccncfext  45808
  Copyright terms: Public domain W3C validator