Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for upgr1wlkd 28412. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) |
upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) |
upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) |
Ref | Expression |
---|---|
upgr1wlkdlem1 | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgr1wlkd.j | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
2 | preq2 4667 | . . . . . . 7 ⊢ (𝑌 = 𝑋 → {𝑋, 𝑌} = {𝑋, 𝑋}) | |
3 | 2 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑌 = 𝑋 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})) |
4 | 3 | eqcoms 2746 | . . . . 5 ⊢ (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})) |
5 | simpl 482 | . . . . . . 7 ⊢ ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}) | |
6 | dfsn2 4571 | . . . . . . 7 ⊢ {𝑋} = {𝑋, 𝑋} | |
7 | 5, 6 | eqtr4di 2797 | . . . . . 6 ⊢ ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
8 | 7 | ex 412 | . . . . 5 ⊢ (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋})) |
9 | 4, 8 | syl6bi 252 | . . . 4 ⊢ (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))) |
10 | 9 | com13 88 | . . 3 ⊢ (𝜑 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))) |
11 | 1, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋})) |
12 | 11 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 {cpr 4560 ‘cfv 6418 〈“cs1 14228 〈“cs2 14482 Vtxcvtx 27269 iEdgciedg 27270 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: upgr1wlkd 28412 upgr1trld 28413 upgr1pthd 28414 upgr1pthond 28415 |
Copyright terms: Public domain | W3C validator |