MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1wlkdlem1 Structured version   Visualization version   GIF version

Theorem upgr1wlkdlem1 28410
Description: Lemma 1 for upgr1wlkd 28412. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
upgr1wlkd.f 𝐹 = ⟨“𝐽”⟩
upgr1wlkd.x (𝜑𝑋 ∈ (Vtx‘𝐺))
upgr1wlkd.y (𝜑𝑌 ∈ (Vtx‘𝐺))
upgr1wlkd.j (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
Assertion
Ref Expression
upgr1wlkdlem1 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})

Proof of Theorem upgr1wlkdlem1
StepHypRef Expression
1 upgr1wlkd.j . . 3 (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
2 preq2 4667 . . . . . . 7 (𝑌 = 𝑋 → {𝑋, 𝑌} = {𝑋, 𝑋})
32eqeq2d 2749 . . . . . 6 (𝑌 = 𝑋 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}))
43eqcoms 2746 . . . . 5 (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}))
5 simpl 482 . . . . . . 7 ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})
6 dfsn2 4571 . . . . . . 7 {𝑋} = {𝑋, 𝑋}
75, 6eqtr4di 2797 . . . . . 6 ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
87ex 412 . . . . 5 (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))
94, 8syl6bi 252 . . . 4 (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋})))
109com13 88 . . 3 (𝜑 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋})))
111, 10mpd 15 . 2 (𝜑 → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))
1211imp 406 1 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {csn 4558  {cpr 4560  cfv 6418  ⟨“cs1 14228  ⟨“cs2 14482  Vtxcvtx 27269  iEdgciedg 27270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-un 3888  df-sn 4559  df-pr 4561
This theorem is referenced by:  upgr1wlkd  28412  upgr1trld  28413  upgr1pthd  28414  upgr1pthond  28415
  Copyright terms: Public domain W3C validator