MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1wlkdlem1 Structured version   Visualization version   GIF version

Theorem upgr1wlkdlem1 30117
Description: Lemma 1 for upgr1wlkd 30119. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
upgr1wlkd.f 𝐹 = ⟨“𝐽”⟩
upgr1wlkd.x (𝜑𝑋 ∈ (Vtx‘𝐺))
upgr1wlkd.y (𝜑𝑌 ∈ (Vtx‘𝐺))
upgr1wlkd.j (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
Assertion
Ref Expression
upgr1wlkdlem1 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})

Proof of Theorem upgr1wlkdlem1
StepHypRef Expression
1 upgr1wlkd.j . . 3 (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
2 preq2 4682 . . . . . . 7 (𝑌 = 𝑋 → {𝑋, 𝑌} = {𝑋, 𝑋})
32eqeq2d 2742 . . . . . 6 (𝑌 = 𝑋 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}))
43eqcoms 2739 . . . . 5 (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}))
5 simpl 482 . . . . . . 7 ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})
6 dfsn2 4584 . . . . . . 7 {𝑋} = {𝑋, 𝑋}
75, 6eqtr4di 2784 . . . . . 6 ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
87ex 412 . . . . 5 (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))
94, 8biimtrdi 253 . . . 4 (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋})))
109com13 88 . . 3 (𝜑 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋})))
111, 10mpd 15 . 2 (𝜑 → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))
1211imp 406 1 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {csn 4571  {cpr 4573  cfv 6476  ⟨“cs1 14498  ⟨“cs2 14743  Vtxcvtx 28969  iEdgciedg 28970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4572  df-pr 4574
This theorem is referenced by:  upgr1wlkd  30119  upgr1trld  30120  upgr1pthd  30121  upgr1pthond  30122
  Copyright terms: Public domain W3C validator