| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > upgr1wlkdlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma 1 for upgr1wlkd 30148. (Contributed by AV, 22-Jan-2021.) |
| Ref | Expression |
|---|---|
| upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
| upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
| upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) |
| upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) |
| upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) |
| Ref | Expression |
|---|---|
| upgr1wlkdlem1 | ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1wlkd.j | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
| 2 | preq2 4688 | . . . . . . 7 ⊢ (𝑌 = 𝑋 → {𝑋, 𝑌} = {𝑋, 𝑋}) | |
| 3 | 2 | eqeq2d 2744 | . . . . . 6 ⊢ (𝑌 = 𝑋 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})) |
| 4 | 3 | eqcoms 2741 | . . . . 5 ⊢ (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} ↔ ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋})) |
| 5 | simpl 482 | . . . . . . 7 ⊢ ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋}) | |
| 6 | dfsn2 4590 | . . . . . . 7 ⊢ {𝑋} = {𝑋, 𝑋} | |
| 7 | 5, 6 | eqtr4di 2786 | . . . . . 6 ⊢ ((((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} ∧ 𝜑) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
| 8 | 7 | ex 412 | . . . . 5 ⊢ (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑋} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋})) |
| 9 | 4, 8 | biimtrdi 253 | . . . 4 ⊢ (𝑋 = 𝑌 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))) |
| 10 | 9 | com13 88 | . . 3 ⊢ (𝜑 → (((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌} → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋}))) |
| 11 | 1, 10 | mpd 15 | . 2 ⊢ (𝜑 → (𝑋 = 𝑌 → ((iEdg‘𝐺)‘𝐽) = {𝑋})) |
| 12 | 11 | imp 406 | 1 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {csn 4577 {cpr 4579 ‘cfv 6489 〈“cs1 14510 〈“cs2 14755 Vtxcvtx 28995 iEdgciedg 28996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: upgr1wlkd 30148 upgr1trld 30149 upgr1pthd 30150 upgr1pthond 30151 |
| Copyright terms: Public domain | W3C validator |