MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgr1pthond Structured version   Visualization version   GIF version

Theorem upgr1pthond 28390
Description: In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.)
Hypotheses
Ref Expression
upgr1wlkd.p 𝑃 = ⟨“𝑋𝑌”⟩
upgr1wlkd.f 𝐹 = ⟨“𝐽”⟩
upgr1wlkd.x (𝜑𝑋 ∈ (Vtx‘𝐺))
upgr1wlkd.y (𝜑𝑌 ∈ (Vtx‘𝐺))
upgr1wlkd.j (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
upgr1wlkd.g (𝜑𝐺 ∈ UPGraph)
Assertion
Ref Expression
upgr1pthond (𝜑𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃)

Proof of Theorem upgr1pthond
StepHypRef Expression
1 upgr1wlkd.p . 2 𝑃 = ⟨“𝑋𝑌”⟩
2 upgr1wlkd.f . 2 𝐹 = ⟨“𝐽”⟩
3 upgr1wlkd.x . 2 (𝜑𝑋 ∈ (Vtx‘𝐺))
4 upgr1wlkd.y . 2 (𝜑𝑌 ∈ (Vtx‘𝐺))
5 upgr1wlkd.j . . 3 (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌})
61, 2, 3, 4, 5upgr1wlkdlem1 28385 . 2 ((𝜑𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋})
71, 2, 3, 4, 5upgr1wlkdlem2 28386 . 2 ((𝜑𝑋𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽))
8 eqid 2739 . 2 (Vtx‘𝐺) = (Vtx‘𝐺)
9 eqid 2739 . 2 (iEdg‘𝐺) = (iEdg‘𝐺)
101, 2, 3, 4, 6, 7, 8, 91pthond 28384 1 (𝜑𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  {cpr 4560   class class class wbr 5070  cfv 6415  (class class class)co 7252  ⟨“cs1 14203  ⟨“cs2 14457  Vtxcvtx 27244  iEdgciedg 27245  UPGraphcupgr 27328  PathsOncpthson 27958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ifp 1064  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-1st 7801  df-2nd 7802  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-map 8552  df-pm 8553  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-card 9603  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-n0 12139  df-z 12225  df-uz 12487  df-fz 13144  df-fzo 13287  df-hash 13948  df-word 14121  df-concat 14177  df-s1 14204  df-s2 14464  df-wlks 27844  df-wlkson 27845  df-trls 27937  df-trlson 27938  df-pths 27960  df-pthson 27962
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator