![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > upgr1pthond | Structured version Visualization version GIF version |
Description: In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
upgr1wlkd.p | β’ π = β¨βππββ© |
upgr1wlkd.f | β’ πΉ = β¨βπ½ββ© |
upgr1wlkd.x | β’ (π β π β (VtxβπΊ)) |
upgr1wlkd.y | β’ (π β π β (VtxβπΊ)) |
upgr1wlkd.j | β’ (π β ((iEdgβπΊ)βπ½) = {π, π}) |
upgr1wlkd.g | β’ (π β πΊ β UPGraph) |
Ref | Expression |
---|---|
upgr1pthond | β’ (π β πΉ(π(PathsOnβπΊ)π)π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgr1wlkd.p | . 2 β’ π = β¨βππββ© | |
2 | upgr1wlkd.f | . 2 β’ πΉ = β¨βπ½ββ© | |
3 | upgr1wlkd.x | . 2 β’ (π β π β (VtxβπΊ)) | |
4 | upgr1wlkd.y | . 2 β’ (π β π β (VtxβπΊ)) | |
5 | upgr1wlkd.j | . . 3 β’ (π β ((iEdgβπΊ)βπ½) = {π, π}) | |
6 | 1, 2, 3, 4, 5 | upgr1wlkdlem1 29666 | . 2 β’ ((π β§ π = π) β ((iEdgβπΊ)βπ½) = {π}) |
7 | 1, 2, 3, 4, 5 | upgr1wlkdlem2 29667 | . 2 β’ ((π β§ π β π) β {π, π} β ((iEdgβπΊ)βπ½)) |
8 | eqid 2731 | . 2 β’ (VtxβπΊ) = (VtxβπΊ) | |
9 | eqid 2731 | . 2 β’ (iEdgβπΊ) = (iEdgβπΊ) | |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | 1pthond 29665 | 1 β’ (π β πΉ(π(PathsOnβπΊ)π)π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 {cpr 4630 class class class wbr 5148 βcfv 6543 (class class class)co 7412 β¨βcs1 14550 β¨βcs2 14797 Vtxcvtx 28524 iEdgciedg 28525 UPGraphcupgr 28608 PathsOncpthson 29239 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ifp 1061 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-1o 8470 df-er 8707 df-map 8826 df-pm 8827 df-en 8944 df-dom 8945 df-sdom 8946 df-fin 8947 df-card 9938 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-n0 12478 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 df-wlks 29124 df-wlkson 29125 df-trls 29217 df-trlson 29218 df-pths 29241 df-pthson 29243 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |