Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > upgr1pthond | Structured version Visualization version GIF version |
Description: In a pseudograph with two vertices and an edge connecting these two vertices, to go from one vertex to the other vertex via this edge is a path from one of these vertices to the other vertex. The two vertices need not be distinct (in the case of a loop) - in this case, however, the path is not a simple path. (Contributed by AV, 22-Jan-2021.) |
Ref | Expression |
---|---|
upgr1wlkd.p | ⊢ 𝑃 = 〈“𝑋𝑌”〉 |
upgr1wlkd.f | ⊢ 𝐹 = 〈“𝐽”〉 |
upgr1wlkd.x | ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) |
upgr1wlkd.y | ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) |
upgr1wlkd.j | ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) |
upgr1wlkd.g | ⊢ (𝜑 → 𝐺 ∈ UPGraph) |
Ref | Expression |
---|---|
upgr1pthond | ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | upgr1wlkd.p | . 2 ⊢ 𝑃 = 〈“𝑋𝑌”〉 | |
2 | upgr1wlkd.f | . 2 ⊢ 𝐹 = 〈“𝐽”〉 | |
3 | upgr1wlkd.x | . 2 ⊢ (𝜑 → 𝑋 ∈ (Vtx‘𝐺)) | |
4 | upgr1wlkd.y | . 2 ⊢ (𝜑 → 𝑌 ∈ (Vtx‘𝐺)) | |
5 | upgr1wlkd.j | . . 3 ⊢ (𝜑 → ((iEdg‘𝐺)‘𝐽) = {𝑋, 𝑌}) | |
6 | 1, 2, 3, 4, 5 | upgr1wlkdlem1 28385 | . 2 ⊢ ((𝜑 ∧ 𝑋 = 𝑌) → ((iEdg‘𝐺)‘𝐽) = {𝑋}) |
7 | 1, 2, 3, 4, 5 | upgr1wlkdlem2 28386 | . 2 ⊢ ((𝜑 ∧ 𝑋 ≠ 𝑌) → {𝑋, 𝑌} ⊆ ((iEdg‘𝐺)‘𝐽)) |
8 | eqid 2739 | . 2 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
9 | eqid 2739 | . 2 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
10 | 1, 2, 3, 4, 6, 7, 8, 9 | 1pthond 28384 | 1 ⊢ (𝜑 → 𝐹(𝑋(PathsOn‘𝐺)𝑌)𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 {cpr 4560 class class class wbr 5070 ‘cfv 6415 (class class class)co 7252 〈“cs1 14203 〈“cs2 14457 Vtxcvtx 27244 iEdgciedg 27245 UPGraphcupgr 27328 PathsOncpthson 27958 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-1o 8244 df-er 8433 df-map 8552 df-pm 8553 df-en 8669 df-dom 8670 df-sdom 8671 df-fin 8672 df-card 9603 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-n0 12139 df-z 12225 df-uz 12487 df-fz 13144 df-fzo 13287 df-hash 13948 df-word 14121 df-concat 14177 df-s1 14204 df-s2 14464 df-wlks 27844 df-wlkson 27845 df-trls 27937 df-trlson 27938 df-pths 27960 df-pthson 27962 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |