| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsb4 | Structured version Visualization version GIF version | ||
| Description: Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-equsb4 | ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeqf 2386 | . . . 4 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧) | |
| 2 | 1 | ex 412 | . . 3 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑦 = 𝑧)) |
| 3 | sbft 2270 | . . 3 ⊢ (Ⅎ𝑥 𝑦 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 4 | 2, 3 | syl6com 37 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧))) |
| 5 | sbequ12r 2252 | . . . 4 ⊢ (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) | |
| 6 | 5 | equcoms 2019 | . . 3 ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 7 | 6 | sps 2185 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) |
| 8 | 4, 7 | pm2.61d2 181 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧 ↔ 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 [wsb 2064 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |