Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-equsb4 Structured version   Visualization version   GIF version

Theorem wl-equsb4 35712
Description: Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable condition. (Contributed by Wolf Lammen, 26-Jun-2019.)
Assertion
Ref Expression
wl-equsb4 (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))

Proof of Theorem wl-equsb4
StepHypRef Expression
1 nfeqf 2381 . . . 4 ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) → Ⅎ𝑥 𝑦 = 𝑧)
21ex 413 . . 3 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → Ⅎ𝑥 𝑦 = 𝑧))
3 sbft 2262 . . 3 (Ⅎ𝑥 𝑦 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
42, 3syl6com 37 . 2 (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧)))
5 sbequ12r 2245 . . . 4 (𝑦 = 𝑥 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
65equcoms 2023 . . 3 (𝑥 = 𝑦 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
76sps 2178 . 2 (∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
84, 7pm2.61d2 181 1 (¬ ∀𝑥 𝑥 = 𝑧 → ([𝑦 / 𝑥]𝑦 = 𝑧𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wal 1537  wnf 1786  [wsb 2067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-10 2137  ax-12 2171  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-nf 1787  df-sb 2068
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator