| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
| Ref | Expression |
|---|---|
| syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6com.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 19.33b 1886 19.36imv 1946 sbequ2 2254 nfeqf2 2379 ax6e 2385 axc16i 2438 mo4 2563 rgen2a 3339 sbccomlem 3817 rspn0 4307 wefrc 5615 elinxp 5975 sorpssuni 7674 sorpssint 7675 ordzsl 7784 limuni3 7791 funcnvuni 7871 funrnex 7895 soxp 8068 frrlem4 8228 oaabs 8572 eceqoveq 8755 pssinf 9156 unbnn2 9191 inf0 9521 inf3lem5 9532 tcel 9643 frmin 9652 rankxpsuc 9785 carduni 9884 prdom2 9907 dfac5 10030 cflm 10151 indpi 10808 prlem934 10934 negf1o 11557 xrub 13221 injresinjlem 13700 hashgt12el 14339 hashgt12el2 14340 fi1uzind 14424 swrdwrdsymb 14580 cshwcsh2id 14745 cshwshash 17026 lidrididd 18588 dfgrp2 18885 symgextf1 19343 rngdi 20088 rngdir 20089 gsummoncoe1 22233 basis2 22876 fbdmn0 23759 rusgr1vtxlem 29577 upgrewlkle2 29596 clwwlknun 30103 conngrv2edg 30186 frcond1 30257 4cyclusnfrgr 30283 atcv0eq 32370 dfon2lem9 35844 altopthsn 36016 rankeq1o 36226 bj-cbvalimt 36694 bj-cbveximt 36695 wl-orel12 37566 wl-equsb4 37612 rngoueqz 37990 hbtlem5 43235 ntrk0kbimka 44146 funressnfv 47157 afvco2 47290 ndmaovcl 47317 bgoldbtbndlem4 47922 isubgr3stgrlem4 48083 zlmodzxznm 48612 |
| Copyright terms: Public domain | W3C validator |