![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1883 19.36imv 1943 sbequ2 2247 nfeqf2 2380 ax6e 2386 axc16i 2439 mo4 2564 rgen2a 3369 sbccomlem 3878 rspn0 4362 wefrc 5683 elinxp 6039 sorpssuni 7751 sorpssint 7752 ordzsl 7866 limuni3 7873 funcnvuni 7955 funrnex 7977 soxp 8153 frrlem4 8313 wfrlem4OLD 8351 wfrlem12OLD 8359 oaabs 8685 eceqoveq 8861 php3OLD 9259 pssinf 9290 unbnn2 9331 inf0 9659 inf3lem5 9670 tcel 9783 frmin 9787 rankxpsuc 9920 carduni 10019 prdom2 10044 dfac5 10167 cflm 10288 indpi 10945 prlem934 11071 negf1o 11691 xrub 13351 injresinjlem 13823 hashgt12el 14458 hashgt12el2 14459 fi1uzind 14543 swrdwrdsymb 14697 cshwcsh2id 14864 cshwshash 17139 lidrididd 18696 dfgrp2 18993 symgextf1 19454 rngdi 20178 rngdir 20179 gsummoncoe1 22328 basis2 22974 fbdmn0 23858 rusgr1vtxlem 29620 upgrewlkle2 29639 clwwlknun 30141 conngrv2edg 30224 frcond1 30295 4cyclusnfrgr 30321 atcv0eq 32408 dfon2lem9 35773 altopthsn 35943 rankeq1o 36153 bj-cbvalimt 36622 bj-cbveximt 36623 wl-orel12 37492 wl-equsb4 37538 rngoueqz 37927 hbtlem5 43117 ntrk0kbimka 44029 funressnfv 46993 afvco2 47126 ndmaovcl 47153 bgoldbtbndlem4 47733 isubgr3stgrlem4 47872 zlmodzxznm 48343 |
Copyright terms: Public domain | W3C validator |