| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
| Ref | Expression |
|---|---|
| syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6com.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 19.33b 1885 19.36imv 1945 sbequ2 2250 nfeqf2 2375 ax6e 2381 axc16i 2434 mo4 2559 rgen2a 3336 sbccomlem 3823 rspn0 4309 wefrc 5617 elinxp 5974 sorpssuni 7672 sorpssint 7673 ordzsl 7785 limuni3 7792 funcnvuni 7872 funrnex 7896 soxp 8069 frrlem4 8229 oaabs 8573 eceqoveq 8756 pssinf 9161 unbnn2 9202 inf0 9536 inf3lem5 9547 tcel 9660 frmin 9664 rankxpsuc 9797 carduni 9896 prdom2 9919 dfac5 10042 cflm 10163 indpi 10820 prlem934 10946 negf1o 11568 xrub 13232 injresinjlem 13708 hashgt12el 14347 hashgt12el2 14348 fi1uzind 14432 swrdwrdsymb 14587 cshwcsh2id 14753 cshwshash 17034 lidrididd 18562 dfgrp2 18859 symgextf1 19318 rngdi 20063 rngdir 20064 gsummoncoe1 22211 basis2 22854 fbdmn0 23737 rusgr1vtxlem 29551 upgrewlkle2 29570 clwwlknun 30074 conngrv2edg 30157 frcond1 30228 4cyclusnfrgr 30254 atcv0eq 32341 dfon2lem9 35764 altopthsn 35934 rankeq1o 36144 bj-cbvalimt 36612 bj-cbveximt 36613 wl-orel12 37484 wl-equsb4 37530 rngoueqz 37919 hbtlem5 43101 ntrk0kbimka 44012 funressnfv 47028 afvco2 47161 ndmaovcl 47188 bgoldbtbndlem4 47793 isubgr3stgrlem4 47952 zlmodzxznm 48470 |
| Copyright terms: Public domain | W3C validator |