| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
| Ref | Expression |
|---|---|
| syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6com.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 19.33b 1885 19.36imv 1945 sbequ2 2250 nfeqf2 2382 ax6e 2388 axc16i 2441 mo4 2566 rgen2a 3355 sbccomlem 3849 rspn0 4336 wefrc 5653 elinxp 6011 sorpssuni 7731 sorpssint 7732 ordzsl 7845 limuni3 7852 funcnvuni 7933 funrnex 7957 soxp 8133 frrlem4 8293 wfrlem4OLD 8331 wfrlem12OLD 8339 oaabs 8665 eceqoveq 8841 php3OLD 9238 pssinf 9269 unbnn2 9310 inf0 9640 inf3lem5 9651 tcel 9764 frmin 9768 rankxpsuc 9901 carduni 10000 prdom2 10025 dfac5 10148 cflm 10269 indpi 10926 prlem934 11052 negf1o 11672 xrub 13333 injresinjlem 13808 hashgt12el 14445 hashgt12el2 14446 fi1uzind 14530 swrdwrdsymb 14685 cshwcsh2id 14852 cshwshash 17129 lidrididd 18653 dfgrp2 18950 symgextf1 19407 rngdi 20125 rngdir 20126 gsummoncoe1 22251 basis2 22894 fbdmn0 23777 rusgr1vtxlem 29572 upgrewlkle2 29591 clwwlknun 30098 conngrv2edg 30181 frcond1 30252 4cyclusnfrgr 30278 atcv0eq 32365 dfon2lem9 35814 altopthsn 35984 rankeq1o 36194 bj-cbvalimt 36662 bj-cbveximt 36663 wl-orel12 37534 wl-equsb4 37580 rngoueqz 37969 hbtlem5 43127 ntrk0kbimka 44038 funressnfv 47052 afvco2 47185 ndmaovcl 47212 bgoldbtbndlem4 47802 isubgr3stgrlem4 47961 zlmodzxznm 48453 |
| Copyright terms: Public domain | W3C validator |