| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
| Ref | Expression |
|---|---|
| syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6com.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 19.33b 1886 19.36imv 1946 sbequ2 2251 nfeqf2 2376 ax6e 2382 axc16i 2435 mo4 2560 rgen2a 3335 sbccomlem 3818 rspn0 4304 wefrc 5608 elinxp 5965 sorpssuni 7660 sorpssint 7661 ordzsl 7770 limuni3 7777 funcnvuni 7857 funrnex 7881 soxp 8054 frrlem4 8214 oaabs 8558 eceqoveq 8741 pssinf 9141 unbnn2 9176 inf0 9506 inf3lem5 9517 tcel 9630 frmin 9634 rankxpsuc 9767 carduni 9866 prdom2 9889 dfac5 10012 cflm 10133 indpi 10790 prlem934 10916 negf1o 11539 xrub 13203 injresinjlem 13682 hashgt12el 14321 hashgt12el2 14322 fi1uzind 14406 swrdwrdsymb 14562 cshwcsh2id 14727 cshwshash 17008 lidrididd 18570 dfgrp2 18867 symgextf1 19326 rngdi 20071 rngdir 20072 gsummoncoe1 22216 basis2 22859 fbdmn0 23742 rusgr1vtxlem 29559 upgrewlkle2 29578 clwwlknun 30082 conngrv2edg 30165 frcond1 30236 4cyclusnfrgr 30262 atcv0eq 32349 dfon2lem9 35804 altopthsn 35974 rankeq1o 36184 bj-cbvalimt 36652 bj-cbveximt 36653 wl-orel12 37524 wl-equsb4 37570 rngoueqz 37959 hbtlem5 43140 ntrk0kbimka 44051 funressnfv 47053 afvco2 47186 ndmaovcl 47213 bgoldbtbndlem4 47818 isubgr3stgrlem4 47979 zlmodzxznm 48508 |
| Copyright terms: Public domain | W3C validator |