Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1889 19.36imv 1949 sbequ2 2242 nfeqf2 2378 ax6e 2384 axc16i 2437 mo4 2567 rgen2a 3159 rspn0 4287 wefrc 5584 elinxp 5932 sorpssuni 7594 sorpssint 7595 ordzsl 7701 limuni3 7708 funcnvuni 7787 funrnex 7805 soxp 7979 frrlem4 8114 wfrlem4OLD 8152 wfrlem12OLD 8160 oaabs 8487 eceqoveq 8620 php3OLD 9016 pssinf 9042 unbnn2 9080 inf0 9388 inf3lem5 9399 tcel 9512 frmin 9516 rankxpsuc 9649 carduni 9748 prdom2 9771 dfac5 9893 cflm 10015 indpi 10672 prlem934 10798 negf1o 11414 xrub 13055 injresinjlem 13516 hashgt12el 14146 hashgt12el2 14147 fi1uzind 14220 swrdwrdsymb 14384 cshwcsh2id 14550 cshwshash 16815 lidrididd 18363 dfgrp2 18613 symgextf1 19038 gsummoncoe1 21484 basis2 22110 fbdmn0 22994 rusgr1vtxlem 27963 upgrewlkle2 27982 clwwlknun 28485 conngrv2edg 28568 frcond1 28639 4cyclusnfrgr 28665 atcv0eq 30750 dfon2lem9 33776 altopthsn 34272 rankeq1o 34482 bj-cbvalimt 34829 bj-cbveximt 34830 wl-orel12 35679 wl-equsb4 35721 rngoueqz 36107 hbtlem5 40960 ntrk0kbimka 41656 funressnfv 44548 afvco2 44679 ndmaovcl 44706 bgoldbtbndlem4 45271 rngdir 45451 zlmodzxznm 45849 |
Copyright terms: Public domain | W3C validator |