![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1884 19.36imv 1944 sbequ2 2250 nfeqf2 2385 ax6e 2391 axc16i 2444 mo4 2569 rgen2a 3379 sbccomlem 3891 rspn0 4379 wefrc 5694 elinxp 6048 sorpssuni 7767 sorpssint 7768 ordzsl 7882 limuni3 7889 funcnvuni 7972 funrnex 7994 soxp 8170 frrlem4 8330 wfrlem4OLD 8368 wfrlem12OLD 8376 oaabs 8704 eceqoveq 8880 php3OLD 9287 pssinf 9319 unbnn2 9361 inf0 9690 inf3lem5 9701 tcel 9814 frmin 9818 rankxpsuc 9951 carduni 10050 prdom2 10075 dfac5 10198 cflm 10319 indpi 10976 prlem934 11102 negf1o 11720 xrub 13374 injresinjlem 13837 hashgt12el 14471 hashgt12el2 14472 fi1uzind 14556 swrdwrdsymb 14710 cshwcsh2id 14877 cshwshash 17152 lidrididd 18708 dfgrp2 19002 symgextf1 19463 rngdi 20187 rngdir 20188 gsummoncoe1 22333 basis2 22979 fbdmn0 23863 rusgr1vtxlem 29623 upgrewlkle2 29642 clwwlknun 30144 conngrv2edg 30227 frcond1 30298 4cyclusnfrgr 30324 atcv0eq 32411 dfon2lem9 35755 altopthsn 35925 rankeq1o 36135 bj-cbvalimt 36605 bj-cbveximt 36606 wl-orel12 37465 wl-equsb4 37511 rngoueqz 37900 hbtlem5 43085 ntrk0kbimka 44001 funressnfv 46958 afvco2 47091 ndmaovcl 47118 bgoldbtbndlem4 47682 zlmodzxznm 48226 |
Copyright terms: Public domain | W3C validator |