| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
| Ref | Expression |
|---|---|
| syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6com.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 19.33b 1885 19.36imv 1945 sbequ2 2250 nfeqf2 2375 ax6e 2381 axc16i 2434 mo4 2559 rgen2a 3345 sbccomlem 3832 rspn0 4319 wefrc 5632 elinxp 5990 sorpssuni 7708 sorpssint 7709 ordzsl 7821 limuni3 7828 funcnvuni 7908 funrnex 7932 soxp 8108 frrlem4 8268 oaabs 8612 eceqoveq 8795 pssinf 9203 unbnn2 9244 inf0 9574 inf3lem5 9585 tcel 9698 frmin 9702 rankxpsuc 9835 carduni 9934 prdom2 9959 dfac5 10082 cflm 10203 indpi 10860 prlem934 10986 negf1o 11608 xrub 13272 injresinjlem 13748 hashgt12el 14387 hashgt12el2 14388 fi1uzind 14472 swrdwrdsymb 14627 cshwcsh2id 14794 cshwshash 17075 lidrididd 18597 dfgrp2 18894 symgextf1 19351 rngdi 20069 rngdir 20070 gsummoncoe1 22195 basis2 22838 fbdmn0 23721 rusgr1vtxlem 29515 upgrewlkle2 29534 clwwlknun 30041 conngrv2edg 30124 frcond1 30195 4cyclusnfrgr 30221 atcv0eq 32308 dfon2lem9 35779 altopthsn 35949 rankeq1o 36159 bj-cbvalimt 36627 bj-cbveximt 36628 wl-orel12 37499 wl-equsb4 37545 rngoueqz 37934 hbtlem5 43117 ntrk0kbimka 44028 funressnfv 47044 afvco2 47177 ndmaovcl 47204 bgoldbtbndlem4 47809 isubgr3stgrlem4 47968 zlmodzxznm 48486 |
| Copyright terms: Public domain | W3C validator |