Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1889 19.36imv 1949 sbequ2 2244 nfeqf2 2377 ax6e 2383 axc16i 2436 mo4 2566 rgen2a 3155 rspn0 4283 wefrc 5574 elinxp 5918 sorpssuni 7563 sorpssint 7564 ordzsl 7667 limuni3 7674 funcnvuni 7752 funrnex 7770 soxp 7941 frrlem4 8076 wfrlem4OLD 8114 wfrlem12OLD 8122 oaabs 8438 eceqoveq 8569 php3 8899 pssinf 8962 unbnn2 9001 inf0 9309 inf3lem5 9320 trpredrec 9415 tcel 9434 frmin 9438 rankxpsuc 9571 carduni 9670 prdom2 9693 dfac5 9815 cflm 9937 indpi 10594 prlem934 10720 negf1o 11335 xrub 12975 injresinjlem 13435 hashgt12el 14065 hashgt12el2 14066 fi1uzind 14139 swrdwrdsymb 14303 cshwcsh2id 14469 cshwshash 16734 lidrididd 18269 dfgrp2 18519 symgextf1 18944 gsummoncoe1 21385 basis2 22009 fbdmn0 22893 rusgr1vtxlem 27857 upgrewlkle2 27876 clwwlknun 28377 conngrv2edg 28460 frcond1 28531 4cyclusnfrgr 28557 atcv0eq 30642 dfon2lem9 33673 altopthsn 34190 rankeq1o 34400 bj-cbvalimt 34747 bj-cbveximt 34748 wl-orel12 35597 wl-equsb4 35639 rngoueqz 36025 hbtlem5 40869 ntrk0kbimka 41538 funressnfv 44424 afvco2 44555 ndmaovcl 44582 bgoldbtbndlem4 45148 rngdir 45328 zlmodzxznm 45726 |
Copyright terms: Public domain | W3C validator |