![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1932 nfeqf2 2338 ax6e 2346 axc16i 2401 rgen2a 3158 wefrc 5349 elinxp 5683 elresOLD 5685 sorpssuni 7223 sorpssint 7224 ordzsl 7323 limuni3 7330 funcnvuni 7398 funrnex 7412 soxp 7571 wfrlem4 7700 wfrlem4OLD 7701 wfrlem12 7709 oaabs 8008 eceqoveq 8136 php3 8434 pssinf 8458 unbnn2 8505 inf0 8815 inf3lem5 8826 tcel 8918 rankxpsuc 9042 carduni 9140 prdom2 9162 dfac5 9284 cflm 9407 indpi 10064 prlem934 10190 negf1o 10805 xrub 12454 injresinjlem 12907 hashgt12el 13524 hashgt12el2 13525 fi1uzind 13593 swrdwrdsymb 13766 cshwcsh2id 13979 cshwshash 16210 dfgrp2 17834 symgextf1 18224 gsummoncoe1 20070 basis2 21163 fbdmn0 22046 rusgr1vtxlem 26935 clwwlknun 27528 conngrv2edg 27612 frcond1 27688 4cyclusnfrgr 27714 atcv0eq 29824 dfon2lem9 32298 trpredrec 32340 frmin 32345 frrlem4 32386 altopthsn 32671 rankeq1o 32881 bj-currypeirce 33138 bj-cbvalimt 33211 bj-cbveximt 33212 wl-orel12 33903 wl-equsb4 33947 rngoueqz 34357 hbtlem5 38649 ntrk0kbimka 39285 funressnfv 42099 afvco2 42209 ndmaovcl 42236 bgoldbtbndlem4 42713 rngdir 42889 zlmodzxznm 43293 |
Copyright terms: Public domain | W3C validator |