Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1887 19.36imv 1947 sbequ2 2240 nfeqf2 2375 ax6e 2381 axc16i 2434 mo4 2564 rgen2a 3340 rspn0 4300 wefrc 5615 elinxp 5962 sorpssuni 7648 sorpssint 7649 ordzsl 7760 limuni3 7767 funcnvuni 7847 funrnex 7865 soxp 8038 frrlem4 8176 wfrlem4OLD 8214 wfrlem12OLD 8222 oaabs 8550 eceqoveq 8683 php3OLD 9090 pssinf 9122 unbnn2 9166 inf0 9479 inf3lem5 9490 tcel 9603 frmin 9607 rankxpsuc 9740 carduni 9839 prdom2 9864 dfac5 9986 cflm 10108 indpi 10765 prlem934 10891 negf1o 11507 xrub 13148 injresinjlem 13609 hashgt12el 14238 hashgt12el2 14239 fi1uzind 14312 swrdwrdsymb 14474 cshwcsh2id 14641 cshwshash 16904 lidrididd 18452 dfgrp2 18701 symgextf1 19126 gsummoncoe1 21582 basis2 22208 fbdmn0 23092 rusgr1vtxlem 28244 upgrewlkle2 28263 clwwlknun 28765 conngrv2edg 28848 frcond1 28919 4cyclusnfrgr 28945 atcv0eq 31030 dfon2lem9 34052 altopthsn 34402 rankeq1o 34612 bj-cbvalimt 34959 bj-cbveximt 34960 wl-orel12 35826 wl-equsb4 35868 rngoueqz 36254 hbtlem5 41267 ntrk0kbimka 42022 funressnfv 44955 afvco2 45086 ndmaovcl 45113 bgoldbtbndlem4 45678 rngdir 45858 zlmodzxznm 46256 |
Copyright terms: Public domain | W3C validator |