![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version |
Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
Ref | Expression |
---|---|
syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
syl6com.2 | ⊢ (𝜒 → 𝜃) |
Ref | Expression |
---|---|
syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: 19.33b 1889 19.36imv 1949 sbequ2 2242 nfeqf2 2377 ax6e 2383 axc16i 2436 mo4 2561 rgen2a 3368 rspn0 4353 wefrc 5671 elinxp 6020 sorpssuni 7722 sorpssint 7723 ordzsl 7834 limuni3 7841 funcnvuni 7922 funrnex 7940 soxp 8115 frrlem4 8274 wfrlem4OLD 8312 wfrlem12OLD 8320 oaabs 8647 eceqoveq 8816 php3OLD 9224 pssinf 9256 unbnn2 9300 inf0 9616 inf3lem5 9627 tcel 9740 frmin 9744 rankxpsuc 9877 carduni 9976 prdom2 10001 dfac5 10123 cflm 10245 indpi 10902 prlem934 11028 negf1o 11644 xrub 13291 injresinjlem 13752 hashgt12el 14382 hashgt12el2 14383 fi1uzind 14458 swrdwrdsymb 14612 cshwcsh2id 14779 cshwshash 17038 lidrididd 18589 dfgrp2 18847 symgextf1 19289 gsummoncoe1 21828 basis2 22454 fbdmn0 23338 rusgr1vtxlem 28844 upgrewlkle2 28863 clwwlknun 29365 conngrv2edg 29448 frcond1 29519 4cyclusnfrgr 29545 atcv0eq 31632 dfon2lem9 34763 altopthsn 34933 rankeq1o 35143 bj-cbvalimt 35516 bj-cbveximt 35517 wl-orel12 36380 wl-equsb4 36422 rngoueqz 36808 hbtlem5 41870 ntrk0kbimka 42790 funressnfv 45753 afvco2 45884 ndmaovcl 45911 bgoldbtbndlem4 46476 rngdi 46659 rngdir 46660 zlmodzxznm 47178 |
Copyright terms: Public domain | W3C validator |