| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl6com | Structured version Visualization version GIF version | ||
| Description: Syllogism inference with commuted antecedents. (Contributed by NM, 25-May-2005.) |
| Ref | Expression |
|---|---|
| syl6com.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| syl6com.2 | ⊢ (𝜒 → 𝜃) |
| Ref | Expression |
|---|---|
| syl6com | ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl6com.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | syl6com.2 | . . 3 ⊢ (𝜒 → 𝜃) | |
| 3 | 1, 2 | syl6 35 | . 2 ⊢ (𝜑 → (𝜓 → 𝜃)) |
| 4 | 3 | com12 32 | 1 ⊢ (𝜓 → (𝜑 → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: 19.33b 1885 19.36imv 1945 sbequ2 2250 nfeqf2 2376 ax6e 2382 axc16i 2435 mo4 2560 rgen2a 3347 sbccomlem 3835 rspn0 4322 wefrc 5635 elinxp 5993 sorpssuni 7711 sorpssint 7712 ordzsl 7824 limuni3 7831 funcnvuni 7911 funrnex 7935 soxp 8111 frrlem4 8271 oaabs 8615 eceqoveq 8798 pssinf 9210 unbnn2 9251 inf0 9581 inf3lem5 9592 tcel 9705 frmin 9709 rankxpsuc 9842 carduni 9941 prdom2 9966 dfac5 10089 cflm 10210 indpi 10867 prlem934 10993 negf1o 11615 xrub 13279 injresinjlem 13755 hashgt12el 14394 hashgt12el2 14395 fi1uzind 14479 swrdwrdsymb 14634 cshwcsh2id 14801 cshwshash 17082 lidrididd 18604 dfgrp2 18901 symgextf1 19358 rngdi 20076 rngdir 20077 gsummoncoe1 22202 basis2 22845 fbdmn0 23728 rusgr1vtxlem 29522 upgrewlkle2 29541 clwwlknun 30048 conngrv2edg 30131 frcond1 30202 4cyclusnfrgr 30228 atcv0eq 32315 dfon2lem9 35786 altopthsn 35956 rankeq1o 36166 bj-cbvalimt 36634 bj-cbveximt 36635 wl-orel12 37506 wl-equsb4 37552 rngoueqz 37941 hbtlem5 43124 ntrk0kbimka 44035 funressnfv 47048 afvco2 47181 ndmaovcl 47208 bgoldbtbndlem4 47813 isubgr3stgrlem4 47972 zlmodzxznm 48490 |
| Copyright terms: Public domain | W3C validator |