![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-mo2tf | Structured version Visualization version GIF version |
Description: Closed form of mof 2597 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.) |
Ref | Expression |
---|---|
wl-mo2tf | ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnae 2441 | . . 3 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
2 | nfa1 2195 | . . 3 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
3 | 1, 2 | nfan 1999 | . 2 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) |
4 | nfnae 2441 | . . 3 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
5 | nfnf1 2198 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑦𝜑 | |
6 | 5 | nfal 2346 | . . 3 ⊢ Ⅎ𝑦∀𝑥Ⅎ𝑦𝜑 |
7 | 4, 6 | nfan 1999 | . 2 ⊢ Ⅎ𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) |
8 | simpl 475 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → ¬ ∀𝑥 𝑥 = 𝑦) | |
9 | sp 2217 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦𝜑) | |
10 | 9 | adantl 474 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → Ⅎ𝑦𝜑) |
11 | 3, 7, 8, 10 | wl-mo2df 33842 | 1 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∀wal 1651 ∃wex 1875 Ⅎwnf 1879 ∃*wmo 2589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-mo 2591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |