| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-mo2tf | Structured version Visualization version GIF version | ||
| Description: Closed form of mof 2563 with a distinctor avoiding distinct variable conditions. (Contributed by Wolf Lammen, 20-Sep-2020.) |
| Ref | Expression |
|---|---|
| wl-mo2tf | ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnae 2439 | . . 3 ⊢ Ⅎ𝑥 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 2 | nfa1 2151 | . . 3 ⊢ Ⅎ𝑥∀𝑥Ⅎ𝑦𝜑 | |
| 3 | 1, 2 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) |
| 4 | nfnae 2439 | . . 3 ⊢ Ⅎ𝑦 ¬ ∀𝑥 𝑥 = 𝑦 | |
| 5 | nfnf1 2154 | . . . 4 ⊢ Ⅎ𝑦Ⅎ𝑦𝜑 | |
| 6 | 5 | nfal 2323 | . . 3 ⊢ Ⅎ𝑦∀𝑥Ⅎ𝑦𝜑 |
| 7 | 4, 6 | nfan 1899 | . 2 ⊢ Ⅎ𝑦(¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) |
| 8 | simpl 482 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → ¬ ∀𝑥 𝑥 = 𝑦) | |
| 9 | sp 2183 | . . 3 ⊢ (∀𝑥Ⅎ𝑦𝜑 → Ⅎ𝑦𝜑) | |
| 10 | 9 | adantl 481 | . 2 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → Ⅎ𝑦𝜑) |
| 11 | 3, 7, 8, 10 | wl-mo2df 37571 | 1 ⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ ∀𝑥Ⅎ𝑦𝜑) → (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 Ⅎwnf 1783 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |