![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5881 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5881 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 4024 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4024 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-co 5709 |
This theorem is referenced by: coeq2i 5885 coeq2d 5887 coi2 6294 f1eqcocnv 7337 ereq1 8770 dfttrcl2 9793 seqf1olem2 14093 seqf1o 14094 relexpsucnnr 15074 isps 18638 pwsco2mhm 18868 gsumwmhm 18880 frmdgsum 18897 frmdup1 18899 frmdup2 18900 efmndov 18916 symggrplem 18919 smndex1mndlem 18944 smndex1mnd 18945 pmtr3ncom 19517 psgnunilem1 19535 frgpuplem 19814 frgpupf 19815 frgpupval 19816 gsumval3eu 19946 gsumval3lem2 19948 rngcinv 20659 ringcinv 20693 selvval 22162 rhmmpl 22408 rhmply1vr1 22412 rhmply1vsca 22413 kgencn2 23586 upxp 23652 uptx 23654 txcn 23655 xkococnlem 23688 xkococn 23689 cnmptk1 23710 cnmptkk 23712 xkofvcn 23713 imasdsf1olem 24404 pi1cof 25111 pi1coval 25112 elovolmr 25530 ovoliunlem3 25558 ismbf1 25678 motplusg 28568 hocsubdir 31817 hoddi 32022 lnopco0i 32036 opsqrlem1 32172 pjsdi2i 32189 pjin2i 32225 pjclem1 32227 symgfcoeu 33075 1arithidomlem1 33528 1arithidom 33530 eulerpartgbij 34337 cvmliftmo 35252 cvmliftlem14 35265 cvmliftiota 35269 cvmlift2lem13 35283 cvmlift2 35284 cvmliftphtlem 35285 cvmlift3lem2 35288 cvmlift3lem6 35292 cvmlift3lem7 35293 cvmlift3lem9 35295 cvmlift3 35296 msubco 35499 ftc1anclem8 37660 upixp 37689 coideq 38202 xrneq1 38333 xrneq2 38336 trlcoat 40680 trljco 40697 tgrpov 40705 tendovalco 40722 erngmul 40763 erngmul-rN 40771 dvamulr 40969 dvavadd 40972 dvhmulr 41043 dihjatcclem4 41378 rhmpsr 42507 mendmulr 43145 hoiprodcl2 46476 ovnlecvr 46479 ovncvrrp 46485 ovnsubaddlem2 46492 ovncvr2 46532 opnvonmbllem1 46553 opnvonmbl 46555 ovolval4lem2 46571 ovolval5lem2 46574 ovolval5lem3 46575 ovolval5 46576 ovnovollem2 46578 rngcinvALTV 47999 ringcinvALTV 48033 itcoval1 48397 itcoval2 48398 itcoval3 48399 itcovalsucov 48402 |
Copyright terms: Public domain | W3C validator |