| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss2 5820 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
| 2 | coss2 5820 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
| 4 | eqss 3962 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3962 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3914 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3931 df-br 5108 df-opab 5170 df-co 5647 |
| This theorem is referenced by: coeq2i 5824 coeq2d 5826 coi2 6236 f1eqcocnv 7276 ereq1 8678 dfttrcl2 9677 seqf1olem2 14007 seqf1o 14008 relexpsucnnr 14991 isps 18527 pwsco2mhm 18760 gsumwmhm 18772 frmdgsum 18789 frmdup1 18791 frmdup2 18792 efmndov 18808 symggrplem 18811 smndex1mndlem 18836 smndex1mnd 18837 pmtr3ncom 19405 psgnunilem1 19423 frgpuplem 19702 frgpupf 19703 frgpupval 19704 gsumval3eu 19834 gsumval3lem2 19836 rngcinv 20546 ringcinv 20580 selvval 22022 rhmmpl 22270 rhmply1vr1 22274 rhmply1vsca 22275 kgencn2 23444 upxp 23510 uptx 23512 txcn 23513 xkococnlem 23546 xkococn 23547 cnmptk1 23568 cnmptkk 23570 xkofvcn 23571 imasdsf1olem 24261 pi1cof 24959 pi1coval 24960 elovolmr 25377 ovoliunlem3 25405 ismbf1 25525 motplusg 28469 hocsubdir 31714 hoddi 31919 lnopco0i 31933 opsqrlem1 32069 pjsdi2i 32086 pjin2i 32122 pjclem1 32124 symgfcoeu 33039 1arithidomlem1 33506 1arithidom 33508 eulerpartgbij 34363 cvmliftmo 35271 cvmliftlem14 35284 cvmliftiota 35288 cvmlift2lem13 35302 cvmlift2 35303 cvmliftphtlem 35304 cvmlift3lem2 35307 cvmlift3lem6 35311 cvmlift3lem7 35312 cvmlift3lem9 35314 cvmlift3 35315 msubco 35518 ftc1anclem8 37694 upixp 37723 coideq 38235 xrneq1 38363 xrneq2 38366 trlcoat 40717 trljco 40734 tgrpov 40742 tendovalco 40759 erngmul 40800 erngmul-rN 40808 dvamulr 41006 dvavadd 41009 dvhmulr 41080 dihjatcclem4 41415 rhmpsr 42540 mendmulr 43173 hoiprodcl2 46553 ovnlecvr 46556 ovncvrrp 46562 ovnsubaddlem2 46569 ovncvr2 46609 opnvonmbllem1 46630 opnvonmbl 46632 ovolval4lem2 46648 ovolval5lem2 46651 ovolval5lem3 46652 ovolval5 46653 ovnovollem2 46655 rngcinvALTV 48264 ringcinvALTV 48298 itcoval1 48652 itcoval2 48653 itcoval3 48654 itcovalsucov 48657 |
| Copyright terms: Public domain | W3C validator |