| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss2 5810 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
| 2 | coss2 5810 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq2i 5814 coeq2d 5816 coi2 6224 f1eqcocnv 7258 ereq1 8655 dfttrcl2 9653 seqf1olem2 13983 seqf1o 13984 relexpsucnnr 14967 isps 18503 pwsco2mhm 18736 gsumwmhm 18748 frmdgsum 18765 frmdup1 18767 frmdup2 18768 efmndov 18784 symggrplem 18787 smndex1mndlem 18812 smndex1mnd 18813 pmtr3ncom 19381 psgnunilem1 19399 frgpuplem 19678 frgpupf 19679 frgpupval 19680 gsumval3eu 19810 gsumval3lem2 19812 rngcinv 20522 ringcinv 20556 selvval 21998 rhmmpl 22246 rhmply1vr1 22250 rhmply1vsca 22251 kgencn2 23420 upxp 23486 uptx 23488 txcn 23489 xkococnlem 23522 xkococn 23523 cnmptk1 23544 cnmptkk 23546 xkofvcn 23547 imasdsf1olem 24237 pi1cof 24935 pi1coval 24936 elovolmr 25353 ovoliunlem3 25381 ismbf1 25501 motplusg 28445 hocsubdir 31687 hoddi 31892 lnopco0i 31906 opsqrlem1 32042 pjsdi2i 32059 pjin2i 32095 pjclem1 32097 symgfcoeu 33012 1arithidomlem1 33479 1arithidom 33481 eulerpartgbij 34336 cvmliftmo 35244 cvmliftlem14 35257 cvmliftiota 35261 cvmlift2lem13 35275 cvmlift2 35276 cvmliftphtlem 35277 cvmlift3lem2 35280 cvmlift3lem6 35284 cvmlift3lem7 35285 cvmlift3lem9 35287 cvmlift3 35288 msubco 35491 ftc1anclem8 37667 upixp 37696 coideq 38208 xrneq1 38336 xrneq2 38339 trlcoat 40690 trljco 40707 tgrpov 40715 tendovalco 40732 erngmul 40773 erngmul-rN 40781 dvamulr 40979 dvavadd 40982 dvhmulr 41053 dihjatcclem4 41388 rhmpsr 42513 mendmulr 43146 hoiprodcl2 46526 ovnlecvr 46529 ovncvrrp 46535 ovnsubaddlem2 46542 ovncvr2 46582 opnvonmbllem1 46603 opnvonmbl 46605 ovolval4lem2 46621 ovolval5lem2 46624 ovolval5lem3 46625 ovolval5 46626 ovnovollem2 46628 rngcinvALTV 48237 ringcinvALTV 48271 itcoval1 48625 itcoval2 48626 itcoval3 48627 itcovalsucov 48630 |
| Copyright terms: Public domain | W3C validator |