![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5857 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5857 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 614 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 3998 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3998 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ⊆ wss 3949 ∘ ccom 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-in 3956 df-ss 3966 df-br 5150 df-opab 5212 df-co 5686 |
This theorem is referenced by: coeq2i 5861 coeq2d 5863 coi2 6263 f1eqcocnv 7299 f1eqcocnvOLD 7300 ereq1 8710 dfttrcl2 9719 seqf1olem2 14008 seqf1o 14009 relexpsucnnr 14972 isps 18521 pwsco2mhm 18714 gsumwmhm 18726 frmdgsum 18743 frmdup1 18745 frmdup2 18746 efmndov 18762 symggrplem 18765 smndex1mndlem 18790 smndex1mnd 18791 pmtr3ncom 19343 psgnunilem1 19361 frgpuplem 19640 frgpupf 19641 frgpupval 19642 gsumval3eu 19772 gsumval3lem2 19774 selvval 21681 kgencn2 23061 upxp 23127 uptx 23129 txcn 23130 xkococnlem 23163 xkococn 23164 cnmptk1 23185 cnmptkk 23187 xkofvcn 23188 imasdsf1olem 23879 pi1cof 24575 pi1coval 24576 elovolmr 24993 ovoliunlem3 25021 ismbf1 25141 motplusg 27793 hocsubdir 31038 hoddi 31243 lnopco0i 31257 opsqrlem1 31393 pjsdi2i 31410 pjin2i 31446 pjclem1 31448 symgfcoeu 32243 eulerpartgbij 33371 cvmliftmo 34275 cvmliftlem14 34288 cvmliftiota 34292 cvmlift2lem13 34306 cvmlift2 34307 cvmliftphtlem 34308 cvmlift3lem2 34311 cvmlift3lem6 34315 cvmlift3lem7 34316 cvmlift3lem9 34318 cvmlift3 34319 msubco 34522 ftc1anclem8 36568 upixp 36597 coideq 37113 xrneq1 37247 xrneq2 37250 trlcoat 39594 trljco 39611 tgrpov 39619 tendovalco 39636 erngmul 39677 erngmul-rN 39685 dvamulr 39883 dvavadd 39886 dvhmulr 39957 dihjatcclem4 40292 rhmmpl 41125 mendmulr 41930 hoiprodcl2 45271 ovnlecvr 45274 ovncvrrp 45280 ovnsubaddlem2 45287 ovncvr2 45327 opnvonmbllem1 45348 opnvonmbl 45350 ovolval4lem2 45366 ovolval5lem2 45369 ovolval5lem3 45370 ovolval5 45371 ovnovollem2 45373 rngcinv 46879 rngcinvALTV 46891 ringcinv 46930 ringcinvALTV 46954 itcoval1 47349 itcoval2 47350 itcoval3 47351 itcovalsucov 47354 |
Copyright terms: Public domain | W3C validator |