![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5854 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5854 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 3996 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3996 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ⊆ wss 3947 ∘ ccom 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-v 3476 df-in 3954 df-ss 3964 df-br 5148 df-opab 5210 df-co 5684 |
This theorem is referenced by: coeq2i 5858 coeq2d 5860 coi2 6259 f1eqcocnv 7295 f1eqcocnvOLD 7296 ereq1 8706 dfttrcl2 9715 seqf1olem2 14004 seqf1o 14005 relexpsucnnr 14968 isps 18517 pwsco2mhm 18710 gsumwmhm 18722 frmdgsum 18739 frmdup1 18741 frmdup2 18742 efmndov 18758 symggrplem 18761 smndex1mndlem 18786 smndex1mnd 18787 pmtr3ncom 19337 psgnunilem1 19355 frgpuplem 19634 frgpupf 19635 frgpupval 19636 gsumval3eu 19766 gsumval3lem2 19768 selvval 21672 kgencn2 23052 upxp 23118 uptx 23120 txcn 23121 xkococnlem 23154 xkococn 23155 cnmptk1 23176 cnmptkk 23178 xkofvcn 23179 imasdsf1olem 23870 pi1cof 24566 pi1coval 24567 elovolmr 24984 ovoliunlem3 25012 ismbf1 25132 motplusg 27782 hocsubdir 31025 hoddi 31230 lnopco0i 31244 opsqrlem1 31380 pjsdi2i 31397 pjin2i 31433 pjclem1 31435 symgfcoeu 32230 eulerpartgbij 33359 cvmliftmo 34263 cvmliftlem14 34276 cvmliftiota 34280 cvmlift2lem13 34294 cvmlift2 34295 cvmliftphtlem 34296 cvmlift3lem2 34299 cvmlift3lem6 34303 cvmlift3lem7 34304 cvmlift3lem9 34306 cvmlift3 34307 msubco 34510 ftc1anclem8 36556 upixp 36585 coideq 37101 xrneq1 37235 xrneq2 37238 trlcoat 39582 trljco 39599 tgrpov 39607 tendovalco 39624 erngmul 39665 erngmul-rN 39673 dvamulr 39871 dvavadd 39874 dvhmulr 39945 dihjatcclem4 40280 rhmmpl 41122 mendmulr 41915 hoiprodcl2 45257 ovnlecvr 45260 ovncvrrp 45266 ovnsubaddlem2 45273 ovncvr2 45313 opnvonmbllem1 45334 opnvonmbl 45336 ovolval4lem2 45352 ovolval5lem2 45355 ovolval5lem3 45356 ovolval5 45357 ovnovollem2 45359 rngcinv 46832 rngcinvALTV 46844 ringcinv 46883 ringcinvALTV 46907 itcoval1 47302 itcoval2 47303 itcoval3 47304 itcovalsucov 47307 |
Copyright terms: Public domain | W3C validator |