| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss2 5810 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
| 2 | coss2 5810 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
| 4 | eqss 3959 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3959 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3911 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-co 5640 |
| This theorem is referenced by: coeq2i 5814 coeq2d 5816 coi2 6224 f1eqcocnv 7258 ereq1 8655 dfttrcl2 9653 seqf1olem2 13983 seqf1o 13984 relexpsucnnr 14967 isps 18509 pwsco2mhm 18742 gsumwmhm 18754 frmdgsum 18771 frmdup1 18773 frmdup2 18774 efmndov 18790 symggrplem 18793 smndex1mndlem 18818 smndex1mnd 18819 pmtr3ncom 19389 psgnunilem1 19407 frgpuplem 19686 frgpupf 19687 frgpupval 19688 gsumval3eu 19818 gsumval3lem2 19820 rngcinv 20557 ringcinv 20591 selvval 22055 rhmmpl 22303 rhmply1vr1 22307 rhmply1vsca 22308 kgencn2 23477 upxp 23543 uptx 23545 txcn 23546 xkococnlem 23579 xkococn 23580 cnmptk1 23601 cnmptkk 23603 xkofvcn 23604 imasdsf1olem 24294 pi1cof 24992 pi1coval 24993 elovolmr 25410 ovoliunlem3 25438 ismbf1 25558 motplusg 28522 hocsubdir 31764 hoddi 31969 lnopco0i 31983 opsqrlem1 32119 pjsdi2i 32136 pjin2i 32172 pjclem1 32174 symgfcoeu 33054 1arithidomlem1 33499 1arithidom 33501 eulerpartgbij 34356 cvmliftmo 35264 cvmliftlem14 35277 cvmliftiota 35281 cvmlift2lem13 35295 cvmlift2 35296 cvmliftphtlem 35297 cvmlift3lem2 35300 cvmlift3lem6 35304 cvmlift3lem7 35305 cvmlift3lem9 35307 cvmlift3 35308 msubco 35511 ftc1anclem8 37687 upixp 37716 coideq 38228 xrneq1 38356 xrneq2 38359 trlcoat 40710 trljco 40727 tgrpov 40735 tendovalco 40752 erngmul 40793 erngmul-rN 40801 dvamulr 40999 dvavadd 41002 dvhmulr 41073 dihjatcclem4 41408 rhmpsr 42533 mendmulr 43166 hoiprodcl2 46546 ovnlecvr 46549 ovncvrrp 46555 ovnsubaddlem2 46562 ovncvr2 46602 opnvonmbllem1 46623 opnvonmbl 46625 ovolval4lem2 46641 ovolval5lem2 46644 ovolval5lem3 46645 ovolval5 46646 ovnovollem2 46648 rngcinvALTV 48257 ringcinvALTV 48291 itcoval1 48645 itcoval2 48646 itcoval3 48647 itcovalsucov 48650 |
| Copyright terms: Public domain | W3C validator |