Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5754 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5754 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 612 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 3932 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3932 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 291 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-co 5589 |
This theorem is referenced by: coeq2i 5758 coeq2d 5760 coi2 6156 f1eqcocnv 7153 f1eqcocnvOLD 7154 ereq1 8463 seqf1olem2 13691 seqf1o 13692 relexpsucnnr 14664 isps 18201 pwsco2mhm 18386 gsumwmhm 18399 frmdgsum 18416 frmdup1 18418 frmdup2 18419 efmndov 18435 symggrplem 18438 smndex1mndlem 18463 smndex1mnd 18464 pmtr3ncom 18998 psgnunilem1 19016 frgpuplem 19293 frgpupf 19294 frgpupval 19295 gsumval3eu 19420 gsumval3lem2 19422 selvval 21238 kgencn2 22616 upxp 22682 uptx 22684 txcn 22685 xkococnlem 22718 xkococn 22719 cnmptk1 22740 cnmptkk 22742 xkofvcn 22743 imasdsf1olem 23434 pi1cof 24128 pi1coval 24129 elovolmr 24545 ovoliunlem3 24573 ismbf1 24693 motplusg 26807 hocsubdir 30048 hoddi 30253 lnopco0i 30267 opsqrlem1 30403 pjsdi2i 30420 pjin2i 30456 pjclem1 30458 symgfcoeu 31253 eulerpartgbij 32239 cvmliftmo 33146 cvmliftlem14 33159 cvmliftiota 33163 cvmlift2lem13 33177 cvmlift2 33178 cvmliftphtlem 33179 cvmlift3lem2 33182 cvmlift3lem6 33186 cvmlift3lem7 33187 cvmlift3lem9 33189 cvmlift3 33190 msubco 33393 dfttrcl2 33710 ftc1anclem8 35784 upixp 35814 coideq 36312 xrneq1 36434 xrneq2 36437 trlcoat 38664 trljco 38681 tgrpov 38689 tendovalco 38706 erngmul 38747 erngmul-rN 38755 dvamulr 38953 dvavadd 38956 dvhmulr 39027 dihjatcclem4 39362 mendmulr 40929 hoiprodcl2 43983 ovnlecvr 43986 ovncvrrp 43992 ovnsubaddlem2 43999 ovncvr2 44039 opnvonmbllem1 44060 opnvonmbl 44062 ovolval4lem2 44078 ovolval5lem2 44081 ovolval5lem3 44082 ovolval5 44083 ovnovollem2 44085 rngcinv 45427 rngcinvALTV 45439 ringcinv 45478 ringcinvALTV 45502 itcoval1 45897 itcoval2 45898 itcoval3 45899 itcovalsucov 45902 |
Copyright terms: Public domain | W3C validator |