![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5870 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5870 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 4011 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 4011 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊆ wss 3963 ∘ ccom 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ss 3980 df-br 5149 df-opab 5211 df-co 5698 |
This theorem is referenced by: coeq2i 5874 coeq2d 5876 coi2 6285 f1eqcocnv 7321 ereq1 8751 dfttrcl2 9762 seqf1olem2 14080 seqf1o 14081 relexpsucnnr 15061 isps 18626 pwsco2mhm 18859 gsumwmhm 18871 frmdgsum 18888 frmdup1 18890 frmdup2 18891 efmndov 18907 symggrplem 18910 smndex1mndlem 18935 smndex1mnd 18936 pmtr3ncom 19508 psgnunilem1 19526 frgpuplem 19805 frgpupf 19806 frgpupval 19807 gsumval3eu 19937 gsumval3lem2 19939 rngcinv 20654 ringcinv 20688 selvval 22157 rhmmpl 22403 rhmply1vr1 22407 rhmply1vsca 22408 kgencn2 23581 upxp 23647 uptx 23649 txcn 23650 xkococnlem 23683 xkococn 23684 cnmptk1 23705 cnmptkk 23707 xkofvcn 23708 imasdsf1olem 24399 pi1cof 25106 pi1coval 25107 elovolmr 25525 ovoliunlem3 25553 ismbf1 25673 motplusg 28565 hocsubdir 31814 hoddi 32019 lnopco0i 32033 opsqrlem1 32169 pjsdi2i 32186 pjin2i 32222 pjclem1 32224 symgfcoeu 33085 1arithidomlem1 33543 1arithidom 33545 eulerpartgbij 34354 cvmliftmo 35269 cvmliftlem14 35282 cvmliftiota 35286 cvmlift2lem13 35300 cvmlift2 35301 cvmliftphtlem 35302 cvmlift3lem2 35305 cvmlift3lem6 35309 cvmlift3lem7 35310 cvmlift3lem9 35312 cvmlift3 35313 msubco 35516 ftc1anclem8 37687 upixp 37716 coideq 38228 xrneq1 38359 xrneq2 38362 trlcoat 40706 trljco 40723 tgrpov 40731 tendovalco 40748 erngmul 40789 erngmul-rN 40797 dvamulr 40995 dvavadd 40998 dvhmulr 41069 dihjatcclem4 41404 rhmpsr 42539 mendmulr 43173 hoiprodcl2 46511 ovnlecvr 46514 ovncvrrp 46520 ovnsubaddlem2 46527 ovncvr2 46567 opnvonmbllem1 46588 opnvonmbl 46590 ovolval4lem2 46606 ovolval5lem2 46609 ovolval5lem3 46610 ovolval5 46611 ovnovollem2 46613 rngcinvALTV 48120 ringcinvALTV 48154 itcoval1 48513 itcoval2 48514 itcoval3 48515 itcovalsucov 48518 |
Copyright terms: Public domain | W3C validator |