| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss2 5823 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
| 2 | coss2 5823 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
| 4 | eqss 3965 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3965 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ss 3934 df-br 5111 df-opab 5173 df-co 5650 |
| This theorem is referenced by: coeq2i 5827 coeq2d 5829 coi2 6239 f1eqcocnv 7279 ereq1 8681 dfttrcl2 9684 seqf1olem2 14014 seqf1o 14015 relexpsucnnr 14998 isps 18534 pwsco2mhm 18767 gsumwmhm 18779 frmdgsum 18796 frmdup1 18798 frmdup2 18799 efmndov 18815 symggrplem 18818 smndex1mndlem 18843 smndex1mnd 18844 pmtr3ncom 19412 psgnunilem1 19430 frgpuplem 19709 frgpupf 19710 frgpupval 19711 gsumval3eu 19841 gsumval3lem2 19843 rngcinv 20553 ringcinv 20587 selvval 22029 rhmmpl 22277 rhmply1vr1 22281 rhmply1vsca 22282 kgencn2 23451 upxp 23517 uptx 23519 txcn 23520 xkococnlem 23553 xkococn 23554 cnmptk1 23575 cnmptkk 23577 xkofvcn 23578 imasdsf1olem 24268 pi1cof 24966 pi1coval 24967 elovolmr 25384 ovoliunlem3 25412 ismbf1 25532 motplusg 28476 hocsubdir 31721 hoddi 31926 lnopco0i 31940 opsqrlem1 32076 pjsdi2i 32093 pjin2i 32129 pjclem1 32131 symgfcoeu 33046 1arithidomlem1 33513 1arithidom 33515 eulerpartgbij 34370 cvmliftmo 35278 cvmliftlem14 35291 cvmliftiota 35295 cvmlift2lem13 35309 cvmlift2 35310 cvmliftphtlem 35311 cvmlift3lem2 35314 cvmlift3lem6 35318 cvmlift3lem7 35319 cvmlift3lem9 35321 cvmlift3 35322 msubco 35525 ftc1anclem8 37701 upixp 37730 coideq 38242 xrneq1 38370 xrneq2 38373 trlcoat 40724 trljco 40741 tgrpov 40749 tendovalco 40766 erngmul 40807 erngmul-rN 40815 dvamulr 41013 dvavadd 41016 dvhmulr 41087 dihjatcclem4 41422 rhmpsr 42547 mendmulr 43180 hoiprodcl2 46560 ovnlecvr 46563 ovncvrrp 46569 ovnsubaddlem2 46576 ovncvr2 46616 opnvonmbllem1 46637 opnvonmbl 46639 ovolval4lem2 46655 ovolval5lem2 46658 ovolval5lem3 46659 ovolval5 46660 ovnovollem2 46662 rngcinvALTV 48268 ringcinvALTV 48302 itcoval1 48656 itcoval2 48657 itcoval3 48658 itcovalsucov 48661 |
| Copyright terms: Public domain | W3C validator |