![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5571 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5571 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 603 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 3867 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3867 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 284 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ⊆ wss 3823 ∘ ccom 5405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2744 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-in 3830 df-ss 3837 df-br 4924 df-opab 4986 df-co 5410 |
This theorem is referenced by: coeq2i 5575 coeq2d 5577 coi2 5949 relcnvtr 5952 f1eqcocnv 6876 ereq1 8090 seqf1olem2 13219 seqf1o 13220 relexpsucnnr 14239 isps 17664 pwsco2mhm 17833 gsumwmhm 17845 frmdgsum 17862 frmdup1 17864 frmdup2 17865 symgov 18273 pmtr3ncom 18358 psgnunilem1 18376 frgpuplem 18652 frgpupf 18653 frgpupval 18654 gsumval3eu 18772 gsumval3lem2 18774 kgencn2 21863 upxp 21929 uptx 21931 txcn 21932 xkococnlem 21965 xkococn 21966 cnmptk1 21987 cnmptkk 21989 xkofvcn 21990 imasdsf1olem 22680 pi1cof 23360 pi1coval 23361 elovolmr 23774 ovoliunlem3 23802 ismbf1 23922 motplusg 26024 hocsubdir 29337 hoddi 29542 lnopco0i 29556 opsqrlem1 29692 pjsdi2i 29709 pjin2i 29745 pjclem1 29747 symgfcoeu 30687 eulerpartgbij 31275 cvmliftmo 32116 cvmliftlem14 32129 cvmliftiota 32133 cvmlift2lem13 32147 cvmlift2 32148 cvmliftphtlem 32149 cvmlift3lem2 32152 cvmlift3lem6 32156 cvmlift3lem7 32157 cvmlift3lem9 32159 cvmlift3 32160 msubco 32298 ftc1anclem8 34415 upixp 34446 coideq 34951 xrneq1 35074 xrneq2 35077 trlcoat 37304 trljco 37321 tgrpov 37329 tendovalco 37346 erngmul 37387 erngmul-rN 37395 dvamulr 37593 dvavadd 37596 dvhmulr 37667 dihjatcclem4 38002 mendmulr 39184 hoiprodcl2 42268 ovnlecvr 42271 ovncvrrp 42277 ovnsubaddlem2 42284 ovncvr2 42324 opnvonmbllem1 42345 opnvonmbl 42347 ovolval4lem2 42363 ovolval5lem2 42366 ovolval5lem3 42367 ovolval5 42368 ovnovollem2 42370 rngcinv 43616 rngcinvALTV 43628 ringcinv 43667 ringcinvALTV 43691 |
Copyright terms: Public domain | W3C validator |