Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
Ref | Expression |
---|---|
coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss2 5765 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
2 | coss2 5765 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
4 | eqss 3936 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3936 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ⊆ wss 3887 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-br 5075 df-opab 5137 df-co 5598 |
This theorem is referenced by: coeq2i 5769 coeq2d 5771 coi2 6167 f1eqcocnv 7173 f1eqcocnvOLD 7174 ereq1 8505 dfttrcl2 9482 seqf1olem2 13763 seqf1o 13764 relexpsucnnr 14736 isps 18286 pwsco2mhm 18471 gsumwmhm 18484 frmdgsum 18501 frmdup1 18503 frmdup2 18504 efmndov 18520 symggrplem 18523 smndex1mndlem 18548 smndex1mnd 18549 pmtr3ncom 19083 psgnunilem1 19101 frgpuplem 19378 frgpupf 19379 frgpupval 19380 gsumval3eu 19505 gsumval3lem2 19507 selvval 21328 kgencn2 22708 upxp 22774 uptx 22776 txcn 22777 xkococnlem 22810 xkococn 22811 cnmptk1 22832 cnmptkk 22834 xkofvcn 22835 imasdsf1olem 23526 pi1cof 24222 pi1coval 24223 elovolmr 24640 ovoliunlem3 24668 ismbf1 24788 motplusg 26903 hocsubdir 30147 hoddi 30352 lnopco0i 30366 opsqrlem1 30502 pjsdi2i 30519 pjin2i 30555 pjclem1 30557 symgfcoeu 31351 eulerpartgbij 32339 cvmliftmo 33246 cvmliftlem14 33259 cvmliftiota 33263 cvmlift2lem13 33277 cvmlift2 33278 cvmliftphtlem 33279 cvmlift3lem2 33282 cvmlift3lem6 33286 cvmlift3lem7 33287 cvmlift3lem9 33289 cvmlift3 33290 msubco 33493 ftc1anclem8 35857 upixp 35887 coideq 36385 xrneq1 36507 xrneq2 36510 trlcoat 38737 trljco 38754 tgrpov 38762 tendovalco 38779 erngmul 38820 erngmul-rN 38828 dvamulr 39026 dvavadd 39029 dvhmulr 39100 dihjatcclem4 39435 mendmulr 41013 hoiprodcl2 44093 ovnlecvr 44096 ovncvrrp 44102 ovnsubaddlem2 44109 ovncvr2 44149 opnvonmbllem1 44170 opnvonmbl 44172 ovolval4lem2 44188 ovolval5lem2 44191 ovolval5lem3 44192 ovolval5 44193 ovnovollem2 44195 rngcinv 45539 rngcinvALTV 45551 ringcinv 45590 ringcinvALTV 45614 itcoval1 46009 itcoval2 46010 itcoval3 46011 itcovalsucov 46014 |
Copyright terms: Public domain | W3C validator |