| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for composition of two classes. (Contributed by NM, 3-Jan-1997.) |
| Ref | Expression |
|---|---|
| coeq2 | ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss2 5836 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵)) | |
| 2 | coss2 5836 | . . 3 ⊢ (𝐵 ⊆ 𝐴 → (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴)) | |
| 3 | 1, 2 | anim12i 613 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) → ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) |
| 4 | eqss 3974 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
| 5 | eqss 3974 | . 2 ⊢ ((𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵) ↔ ((𝐶 ∘ 𝐴) ⊆ (𝐶 ∘ 𝐵) ∧ (𝐶 ∘ 𝐵) ⊆ (𝐶 ∘ 𝐴))) | |
| 6 | 3, 4, 5 | 3imtr4i 292 | 1 ⊢ (𝐴 = 𝐵 → (𝐶 ∘ 𝐴) = (𝐶 ∘ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊆ wss 3926 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-co 5663 |
| This theorem is referenced by: coeq2i 5840 coeq2d 5842 coi2 6252 f1eqcocnv 7294 ereq1 8726 dfttrcl2 9738 seqf1olem2 14060 seqf1o 14061 relexpsucnnr 15044 isps 18578 pwsco2mhm 18811 gsumwmhm 18823 frmdgsum 18840 frmdup1 18842 frmdup2 18843 efmndov 18859 symggrplem 18862 smndex1mndlem 18887 smndex1mnd 18888 pmtr3ncom 19456 psgnunilem1 19474 frgpuplem 19753 frgpupf 19754 frgpupval 19755 gsumval3eu 19885 gsumval3lem2 19887 rngcinv 20597 ringcinv 20631 selvval 22073 rhmmpl 22321 rhmply1vr1 22325 rhmply1vsca 22326 kgencn2 23495 upxp 23561 uptx 23563 txcn 23564 xkococnlem 23597 xkococn 23598 cnmptk1 23619 cnmptkk 23621 xkofvcn 23622 imasdsf1olem 24312 pi1cof 25010 pi1coval 25011 elovolmr 25429 ovoliunlem3 25457 ismbf1 25577 motplusg 28521 hocsubdir 31766 hoddi 31971 lnopco0i 31985 opsqrlem1 32121 pjsdi2i 32138 pjin2i 32174 pjclem1 32176 symgfcoeu 33093 1arithidomlem1 33550 1arithidom 33552 eulerpartgbij 34404 cvmliftmo 35306 cvmliftlem14 35319 cvmliftiota 35323 cvmlift2lem13 35337 cvmlift2 35338 cvmliftphtlem 35339 cvmlift3lem2 35342 cvmlift3lem6 35346 cvmlift3lem7 35347 cvmlift3lem9 35349 cvmlift3 35350 msubco 35553 ftc1anclem8 37724 upixp 37753 coideq 38265 xrneq1 38395 xrneq2 38398 trlcoat 40742 trljco 40759 tgrpov 40767 tendovalco 40784 erngmul 40825 erngmul-rN 40833 dvamulr 41031 dvavadd 41034 dvhmulr 41105 dihjatcclem4 41440 rhmpsr 42575 mendmulr 43208 hoiprodcl2 46584 ovnlecvr 46587 ovncvrrp 46593 ovnsubaddlem2 46600 ovncvr2 46640 opnvonmbllem1 46661 opnvonmbl 46663 ovolval4lem2 46679 ovolval5lem2 46682 ovolval5lem3 46683 ovolval5 46684 ovnovollem2 46686 rngcinvALTV 48251 ringcinvALTV 48285 itcoval1 48643 itcoval2 48644 itcoval3 48645 itcovalsucov 48648 |
| Copyright terms: Public domain | W3C validator |