NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  addcdi Unicode version

Theorem addcdi 6251
Description: Distributivity law for cardinal addition and multiplication. Theorem XI.2.31 of [Rosser] p. 379. (Contributed by Scott Fenton, 31-Jul-2019.)
Assertion
Ref Expression
addcdi NC NC NC ·c ·c ·c

Proof of Theorem addcdi
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ncaddccl 6145 . . 3 NC NC NC
213adant1 973 . 2 NC NC NC NC
3 elncs 6120 . . 3 NC Nc
4 vex 2863 . . . . . . 7
54ncid 6124 . . . . . 6 Nc
6 eleq2 2414 . . . . . 6 Nc Nc
75, 6mpbiri 224 . . . . 5 Nc
8 eladdc 4399 . . . . . 6
9 ncseqnc 6129 . . . . . . . . . 10 NC Nc
10 ncseqnc 6129 . . . . . . . . . 10 NC Nc
119, 10bi2anan9 843 . . . . . . . . 9 NC NC Nc Nc
12113adant1 973 . . . . . . . 8 NC NC NC Nc Nc
13 elncs 6120 . . . . . . . . . . . 12 NC Nc
14 vex 2863 . . . . . . . . . . . . . . . . 17
15 vex 2863 . . . . . . . . . . . . . . . . 17
1614, 15ncdisjun 6137 . . . . . . . . . . . . . . . 16 Nc Nc Nc
1716oveq2d 5539 . . . . . . . . . . . . . . 15 Nc ·c Nc Nc ·c Nc Nc
18 xpdisj2 5049 . . . . . . . . . . . . . . . . 17
194, 14xpex 5116 . . . . . . . . . . . . . . . . . 18
204, 15xpex 5116 . . . . . . . . . . . . . . . . . 18
2119, 20ncdisjun 6137 . . . . . . . . . . . . . . . . 17 Nc Nc Nc
2218, 21syl 15 . . . . . . . . . . . . . . . 16 Nc Nc Nc
2314, 15unex 4107 . . . . . . . . . . . . . . . . . 18
244, 23mucnc 6132 . . . . . . . . . . . . . . . . 17 Nc ·c Nc Nc
25 xpundi 4833 . . . . . . . . . . . . . . . . . 18
2625nceqi 6110 . . . . . . . . . . . . . . . . 17 Nc Nc
2724, 26eqtri 2373 . . . . . . . . . . . . . . . 16 Nc ·c Nc Nc
284, 14mucnc 6132 . . . . . . . . . . . . . . . . 17 Nc ·c Nc Nc
294, 15mucnc 6132 . . . . . . . . . . . . . . . . 17 Nc ·c Nc Nc
3028, 29addceq12i 4389 . . . . . . . . . . . . . . . 16 Nc ·c Nc Nc ·c Nc Nc Nc
3122, 27, 303eqtr4g 2410 . . . . . . . . . . . . . . 15 Nc ·c Nc Nc ·c Nc Nc ·c Nc
3217, 31eqtr3d 2387 . . . . . . . . . . . . . 14 Nc ·c Nc Nc Nc ·c Nc Nc ·c Nc
33 oveq1 5531 . . . . . . . . . . . . . . 15 Nc ·c Nc Nc Nc ·c Nc Nc
34 oveq1 5531 . . . . . . . . . . . . . . . 16 Nc ·c Nc Nc ·c Nc
35 oveq1 5531 . . . . . . . . . . . . . . . 16 Nc ·c Nc Nc ·c Nc
3634, 35addceq12d 4392 . . . . . . . . . . . . . . 15 Nc ·c Nc ·c Nc Nc ·c Nc Nc ·c Nc
3733, 36eqeq12d 2367 . . . . . . . . . . . . . 14 Nc ·c Nc Nc ·c Nc ·c Nc Nc ·c Nc Nc Nc ·c Nc Nc ·c Nc
3832, 37syl5ibr 212 . . . . . . . . . . . . 13 Nc ·c Nc Nc ·c Nc ·c Nc
3938exlimiv 1634 . . . . . . . . . . . 12 Nc ·c Nc Nc ·c Nc ·c Nc
4013, 39sylbi 187 . . . . . . . . . . 11 NC ·c Nc Nc ·c Nc ·c Nc
4140adantrd 454 . . . . . . . . . 10 NC ·c Nc Nc ·c Nc ·c Nc
42 addceq12 4386 . . . . . . . . . . . . 13 Nc Nc Nc Nc
4342oveq2d 5539 . . . . . . . . . . . 12 Nc Nc ·c ·c Nc Nc
44 oveq2 5532 . . . . . . . . . . . . . 14 Nc ·c ·c Nc
4544adantr 451 . . . . . . . . . . . . 13 Nc Nc ·c ·c Nc
46 oveq2 5532 . . . . . . . . . . . . . 14 Nc ·c ·c Nc
4746adantl 452 . . . . . . . . . . . . 13 Nc Nc ·c ·c Nc
4845, 47addceq12d 4392 . . . . . . . . . . . 12 Nc Nc ·c ·c ·c Nc ·c Nc
4943, 48eqeq12d 2367 . . . . . . . . . . 11 Nc Nc ·c ·c ·c ·c Nc Nc ·c Nc ·c Nc
5049imbi2d 307 . . . . . . . . . 10 Nc Nc ·c ·c ·c ·c Nc Nc ·c Nc ·c Nc
5141, 50syl5ibrcom 213 . . . . . . . . 9 NC Nc Nc ·c ·c ·c
52513ad2ant1 976 . . . . . . . 8 NC NC NC Nc Nc ·c ·c ·c
5312, 52sylbird 226 . . . . . . 7 NC NC NC ·c ·c ·c
5453rexlimdvv 2745 . . . . . 6 NC NC NC ·c ·c ·c
558, 54syl5bi 208 . . . . 5 NC NC NC ·c ·c ·c
567, 55syl5 28 . . . 4 NC NC NC Nc ·c ·c ·c
5756exlimdv 1636 . . 3 NC NC NC Nc ·c ·c ·c
583, 57syl5bi 208 . 2 NC NC NC NC ·c ·c ·c
592, 58mpd 14 1 NC NC NC ·c ·c ·c
Colors of variables: wff setvar class
Syntax hints:   wi 4   wb 176   wa 358   w3a 934  wex 1541   wceq 1642   wcel 1710  wrex 2616   cun 3208   cin 3209  c0 3551   cplc 4376   cxp 4771  (class class class)co 5526   NC cncs 6089   Nc cnc 6092   ·c cmuc 6093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-csb 3138  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-pprod 5739  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-cross 5765  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-en 6030  df-ncs 6099  df-nc 6102  df-muc 6103
This theorem is referenced by:  addcdir  6252
  Copyright terms: Public domain W3C validator