NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  spaccl GIF version

Theorem spaccl 6287
Description: Closure law for the special set generator. (Contributed by SF, 13-Mar-2015.)
Assertion
Ref Expression
spaccl ((M NC N ( SpacM) (Nc 0c) NC ) → (2cc N) ( SpacM))

Proof of Theorem spaccl
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 956 . . . 4 ((M NC N ( SpacM) (Nc 0c) NC ) → N ( SpacM))
2 spacval 6283 . . . . 5 (M NC → ( SpacM) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
323ad2ant1 976 . . . 4 ((M NC N ( SpacM) (Nc 0c) NC ) → ( SpacM) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
41, 3eleqtrd 2429 . . 3 ((M NC N ( SpacM) (Nc 0c) NC ) → N Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
5 spacssnc 6285 . . . . . 6 (M NC → ( SpacM) NC )
65sselda 3274 . . . . 5 ((M NC N ( SpacM)) → N NC )
763adant3 975 . . . 4 ((M NC N ( SpacM) (Nc 0c) NC ) → N NC )
8 simp3 957 . . . . 5 ((M NC N ( SpacM) (Nc 0c) NC ) → (Nc 0c) NC )
9 2nnc 6168 . . . . . 6 2c Nn
10 ceclnn1 6190 . . . . . 6 ((2c Nn N NC (Nc 0c) NC ) → (2cc N) NC )
119, 10mp3an1 1264 . . . . 5 ((N NC (Nc 0c) NC ) → (2cc N) NC )
127, 8, 11syl2anc 642 . . . 4 ((M NC N ( SpacM) (Nc 0c) NC ) → (2cc N) NC )
13 eqidd 2354 . . . 4 ((M NC N ( SpacM) (Nc 0c) NC ) → (2cc N) = (2cc N))
14 ovex 5552 . . . . . 6 (2cc N) V
15 eleq1 2413 . . . . . . . 8 (x = N → (x NCN NC ))
16 oveq2 5532 . . . . . . . . 9 (x = N → (2cc x) = (2cc N))
1716eqeq2d 2364 . . . . . . . 8 (x = N → (y = (2cc x) ↔ y = (2cc N)))
1815, 173anbi13d 1254 . . . . . . 7 (x = N → ((x NC y NC y = (2cc x)) ↔ (N NC y NC y = (2cc N))))
19 eleq1 2413 . . . . . . . 8 (y = (2cc N) → (y NC ↔ (2cc N) NC ))
20 eqeq1 2359 . . . . . . . 8 (y = (2cc N) → (y = (2cc N) ↔ (2cc N) = (2cc N)))
2119, 203anbi23d 1255 . . . . . . 7 (y = (2cc N) → ((N NC y NC y = (2cc N)) ↔ (N NC (2cc N) NC (2cc N) = (2cc N))))
22 eqid 2353 . . . . . . 7 {x, y (x NC y NC y = (2cc x))} = {x, y (x NC y NC y = (2cc x))}
2318, 21, 22brabg 4707 . . . . . 6 ((N ( SpacM) (2cc N) V) → (N{x, y (x NC y NC y = (2cc x))} (2cc N) ↔ (N NC (2cc N) NC (2cc N) = (2cc N))))
2414, 23mpan2 652 . . . . 5 (N ( SpacM) → (N{x, y (x NC y NC y = (2cc x))} (2cc N) ↔ (N NC (2cc N) NC (2cc N) = (2cc N))))
25243ad2ant2 977 . . . 4 ((M NC N ( SpacM) (Nc 0c) NC ) → (N{x, y (x NC y NC y = (2cc x))} (2cc N) ↔ (N NC (2cc N) NC (2cc N) = (2cc N))))
267, 12, 13, 25mpbir3and 1135 . . 3 ((M NC N ( SpacM) (Nc 0c) NC ) → N{x, y (x NC y NC y = (2cc x))} (2cc N))
27 eqid 2353 . . . 4 Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}) = Clos1 ({M}, {x, y (x NC y NC y = (2cc x))})
2827clos1conn 5880 . . 3 ((N Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}) N{x, y (x NC y NC y = (2cc x))} (2cc N)) → (2cc N) Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
294, 26, 28syl2anc 642 . 2 ((M NC N ( SpacM) (Nc 0c) NC ) → (2cc N) Clos1 ({M}, {x, y (x NC y NC y = (2cc x))}))
3029, 3eleqtrrd 2430 1 ((M NC N ( SpacM) (Nc 0c) NC ) → (2cc N) ( SpacM))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   w3a 934   = wceq 1642   wcel 1710  Vcvv 2860  {csn 3738   Nn cnnc 4374  0cc0c 4375  {copab 4623   class class class wbr 4640  cfv 4782  (class class class)co 5526   Clos1 cclos1 5873   NC cncs 6089  2cc2c 6095  c cce 6097   Spac cspac 6274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-fix 5741  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-fullfun 5769  df-clos1 5874  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107  df-spac 6275
This theorem is referenced by:  nchoicelem6  6295
  Copyright terms: Public domain W3C validator