NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfop2lem1 GIF version

Theorem dfop2lem1 4574
Description: Lemma for dfop2 4576 and dfproj22 4578. (Contributed by SF, 2-Jan-2015.)
Assertion
Ref Expression
dfop2lem1 (⟪x, y ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ y = ( Phi x ∪ {0c}))
Distinct variable group:   x,y

Proof of Theorem dfop2lem1
Dummy variables z t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opkex 4114 . . . . 5 x, y V
21elimak 4260 . . . 4 (⟪x, y (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ t 1 11ct, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))))
3 elpw121c 4149 . . . . . . . 8 (t 111cz t = {{{z}}})
43anbi1i 676 . . . . . . 7 ((t 111c t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ (z t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
5 19.41v 1901 . . . . . . 7 (z(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ (z t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
64, 5bitr4i 243 . . . . . 6 ((t 111c t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ z(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
76exbii 1582 . . . . 5 (t(t 111c t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ tz(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
8 df-rex 2621 . . . . 5 (t 1 11ct, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) ↔ t(t 111c t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
9 excom 1741 . . . . 5 (zt(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ tz(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
107, 8, 93bitr4i 268 . . . 4 (t 1 11ct, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) ↔ zt(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
11 snex 4112 . . . . . . 7 {{{z}}} V
12 opkeq1 4060 . . . . . . . 8 (t = {{{z}}} → ⟪t, ⟪x, y⟫⟫ = ⟪{{{z}}}, ⟪x, y⟫⟫)
1312eleq1d 2419 . . . . . . 7 (t = {{{z}}} → (⟪t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) ↔ ⟪{{{z}}}, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))))
1411, 13ceqsexv 2895 . . . . . 6 (t(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ ⟪{{{z}}}, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))))
15 elsymdif 3224 . . . . . 6 (⟪{{{z}}}, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) ↔ ¬ (⟪{{{z}}}, ⟪x, y⟫⟫ Ins2k Sk ↔ ⟪{{{z}}}, ⟪x, y⟫⟫ Ins3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))))
16 snex 4112 . . . . . . . . . 10 {z} V
17 vex 2863 . . . . . . . . . 10 x V
18 vex 2863 . . . . . . . . . 10 y V
1916, 17, 18otkelins2k 4256 . . . . . . . . 9 (⟪{{{z}}}, ⟪x, y⟫⟫ Ins2k Sk ↔ ⟪{z}, y Sk )
20 vex 2863 . . . . . . . . . 10 z V
2120, 18elssetk 4271 . . . . . . . . 9 (⟪{z}, y Skz y)
2219, 21bitri 240 . . . . . . . 8 (⟪{{{z}}}, ⟪x, y⟫⟫ Ins2k Skz y)
2316, 17, 18otkelins3k 4257 . . . . . . . . 9 (⟪{{{z}}}, ⟪x, y⟫⟫ Ins3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)) ↔ ⟪{z}, x ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))
24 elun 3221 . . . . . . . . 9 (⟪{z}, x ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)) ↔ (⟪{z}, x (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ⟪{z}, x ({{0c}} ×k V)))
25 ancom 437 . . . . . . . . . . . . . 14 ((⟪{z}, y Sk y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ↔ (⟪y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ⟪{z}, y Sk ))
2617, 18opkelimagek 4273 . . . . . . . . . . . . . . . 16 (⟪x, y Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ↔ y = (((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k x))
2718, 17opkelcnvk 4251 . . . . . . . . . . . . . . . 16 (⟪y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ↔ ⟪x, y Imagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))))
28 dfphi2 4570 . . . . . . . . . . . . . . . . 17 Phi x = (((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k x)
2928eqeq2i 2363 . . . . . . . . . . . . . . . 16 (y = Phi xy = (((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) “k x))
3026, 27, 293bitr4i 268 . . . . . . . . . . . . . . 15 (⟪y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ↔ y = Phi x)
3130, 21anbi12i 678 . . . . . . . . . . . . . 14 ((⟪y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) ⟪{z}, y Sk ) ↔ (y = Phi x z y))
3225, 31bitri 240 . . . . . . . . . . . . 13 ((⟪{z}, y Sk y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ↔ (y = Phi x z y))
3332exbii 1582 . . . . . . . . . . . 12 (y(⟪{z}, y Sk y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))) ↔ y(y = Phi x z y))
3416, 17opkelcok 4263 . . . . . . . . . . . 12 (⟪{z}, x (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ↔ y(⟪{z}, y Sk y, x kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V)))))
3517phiex 4573 . . . . . . . . . . . . 13 Phi x V
3635clel3 2978 . . . . . . . . . . . 12 (z Phi xy(y = Phi x z y))
3733, 34, 363bitr4i 268 . . . . . . . . . . 11 (⟪{z}, x (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ↔ z Phi x)
3816, 17opkelxpk 4249 . . . . . . . . . . . . 13 (⟪{z}, x ({{0c}} ×k V) ↔ ({z} {{0c}} x V))
3917, 38mpbiran2 885 . . . . . . . . . . . 12 (⟪{z}, x ({{0c}} ×k V) ↔ {z} {{0c}})
4020sneqb 3877 . . . . . . . . . . . . 13 ({z} = {0c} ↔ z = 0c)
4116elsnc 3757 . . . . . . . . . . . . 13 ({z} {{0c}} ↔ {z} = {0c})
4220elsnc 3757 . . . . . . . . . . . . 13 (z {0c} ↔ z = 0c)
4340, 41, 423bitr4ri 269 . . . . . . . . . . . 12 (z {0c} ↔ {z} {{0c}})
4439, 43bitr4i 243 . . . . . . . . . . 11 (⟪{z}, x ({{0c}} ×k V) ↔ z {0c})
4537, 44orbi12i 507 . . . . . . . . . 10 ((⟪{z}, x (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ⟪{z}, x ({{0c}} ×k V)) ↔ (z Phi x z {0c}))
46 elun 3221 . . . . . . . . . 10 (z ( Phi x ∪ {0c}) ↔ (z Phi x z {0c}))
4745, 46bitr4i 243 . . . . . . . . 9 ((⟪{z}, x (kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ⟪{z}, x ({{0c}} ×k V)) ↔ z ( Phi x ∪ {0c}))
4823, 24, 473bitri 262 . . . . . . . 8 (⟪{{{z}}}, ⟪x, y⟫⟫ Ins3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)) ↔ z ( Phi x ∪ {0c}))
4922, 48bibi12i 306 . . . . . . 7 ((⟪{{{z}}}, ⟪x, y⟫⟫ Ins2k Sk ↔ ⟪{{{z}}}, ⟪x, y⟫⟫ Ins3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) ↔ (z yz ( Phi x ∪ {0c})))
5049notbii 287 . . . . . 6 (¬ (⟪{{{z}}}, ⟪x, y⟫⟫ Ins2k Sk ↔ ⟪{{{z}}}, ⟪x, y⟫⟫ Ins3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) ↔ ¬ (z yz ( Phi x ∪ {0c})))
5114, 15, 503bitri 262 . . . . 5 (t(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ ¬ (z yz ( Phi x ∪ {0c})))
5251exbii 1582 . . . 4 (zt(t = {{{z}}} t, ⟪x, y⟫⟫ ( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V)))) ↔ z ¬ (z yz ( Phi x ∪ {0c})))
532, 10, 523bitri 262 . . 3 (⟪x, y (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ z ¬ (z yz ( Phi x ∪ {0c})))
5453notbii 287 . 2 (¬ ⟪x, y (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ ¬ z ¬ (z yz ( Phi x ∪ {0c})))
551elcompl 3226 . 2 (⟪x, y ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ ¬ ⟪x, y (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c))
56 dfcleq 2347 . . 3 (y = ( Phi x ∪ {0c}) ↔ z(z yz ( Phi x ∪ {0c})))
57 alex 1572 . . 3 (z(z yz ( Phi x ∪ {0c})) ↔ ¬ z ¬ (z yz ( Phi x ∪ {0c})))
5856, 57bitri 240 . 2 (y = ( Phi x ∪ {0c}) ↔ ¬ z ¬ (z yz ( Phi x ∪ {0c})))
5954, 55, 583bitr4i 268 1 (⟪x, y ∼ (( Ins2k SkIns3k ((kImagek((Imagek(( Ins3k ∼ (( Ins3k SkIns2k Sk ) “k 111c) (( Ins2k Ins2k Sk ⊕ ( Ins2k Ins3k SkIns3k SIk SIk Sk )) “k 11111c)) “k 111c) ∩ ( Nn ×k V)) ∪ ( Ik ∩ ( ∼ Nn ×k V))) k Sk ) ∪ ({{0c}} ×k V))) “k 111c) ↔ y = ( Phi x ∪ {0c}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wo 357   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cun 3208  cin 3209  csymdif 3210  {csn 3738  copk 4058  1cc1c 4135  1cpw1 4136   ×k cxpk 4175  kccnvk 4176   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   k ccomk 4181   SIk csik 4182  Imagekcimagek 4183   Sk cssetk 4184   Ik cidk 4185   Nn cnnc 4374  0cc0c 4375   Phi cphi 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566
This theorem is referenced by:  dfop2lem2  4575  dfproj22  4578  dfswap2  4742
  Copyright terms: Public domain W3C validator