Step | Hyp | Ref
| Expression |
1 | | opkex 4114 |
. . . . 5
⊢ ⟪{A}, B⟫
∈ V |
2 | 1 | elimak 4260 |
. . . 4
⊢ (⟪{A}, B⟫
∈ (( Ins2k Sk ⊕ Ins3k SIk Sk ) “k ℘1℘11c) ↔ ∃t ∈ ℘1
℘11c⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) |
3 | | elpw121c 4149 |
. . . . . . . 8
⊢ (t ∈ ℘1℘11c ↔ ∃x t = {{{x}}}) |
4 | 3 | anbi1i 676 |
. . . . . . 7
⊢ ((t ∈ ℘1℘11c ∧ ⟪t,
⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ (∃x t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
5 | | 19.41v 1901 |
. . . . . . 7
⊢ (∃x(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ (∃x t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
6 | 4, 5 | bitr4i 243 |
. . . . . 6
⊢ ((t ∈ ℘1℘11c ∧ ⟪t,
⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ ∃x(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
7 | 6 | exbii 1582 |
. . . . 5
⊢ (∃t(t ∈ ℘1℘11c ∧ ⟪t,
⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ ∃t∃x(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
8 | | df-rex 2621 |
. . . . 5
⊢ (∃t ∈ ℘1
℘11c⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ) ↔ ∃t(t ∈ ℘1℘11c ∧ ⟪t,
⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
9 | | excom 1741 |
. . . . 5
⊢ (∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ ∃t∃x(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
10 | 7, 8, 9 | 3bitr4i 268 |
. . . 4
⊢ (∃t ∈ ℘1
℘11c⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ) ↔ ∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
11 | | snex 4112 |
. . . . . . 7
⊢ {{{x}}} ∈
V |
12 | | opkeq1 4060 |
. . . . . . . 8
⊢ (t = {{{x}}}
→ ⟪t, ⟪{A}, B⟫⟫ = ⟪{{{x}}}, ⟪{A}, B⟫⟫) |
13 | 12 | eleq1d 2419 |
. . . . . . 7
⊢ (t = {{{x}}}
→ (⟪t, ⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ) ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ))) |
14 | 11, 13 | ceqsexv 2895 |
. . . . . 6
⊢ (∃t(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) |
15 | | elsymdif 3224 |
. . . . . 6
⊢
(⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk ) ↔ ¬ (⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins2k Sk ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins3k SIk Sk )) |
16 | | snex 4112 |
. . . . . . . . . 10
⊢ {x} ∈
V |
17 | | snex 4112 |
. . . . . . . . . 10
⊢ {A} ∈
V |
18 | | eqpwrelk.2 |
. . . . . . . . . 10
⊢ B ∈
V |
19 | 16, 17, 18 | otkelins2k 4256 |
. . . . . . . . 9
⊢
(⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins2k Sk ↔ ⟪{x}, B⟫
∈ Sk ) |
20 | | vex 2863 |
. . . . . . . . . 10
⊢ x ∈
V |
21 | 20, 18 | elssetk 4271 |
. . . . . . . . 9
⊢ (⟪{x}, B⟫
∈ Sk ↔ x ∈ B) |
22 | 19, 21 | bitri 240 |
. . . . . . . 8
⊢
(⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins2k Sk ↔ x ∈ B) |
23 | 16, 17, 18 | otkelins3k 4257 |
. . . . . . . . 9
⊢
(⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins3k SIk Sk ↔ ⟪{x}, {A}⟫
∈ SIk Sk ) |
24 | | eqpwrelk.1 |
. . . . . . . . . 10
⊢ A ∈
V |
25 | 20, 24 | opksnelsik 4266 |
. . . . . . . . 9
⊢ (⟪{x}, {A}⟫
∈ SIk Sk ↔ ⟪x, A⟫
∈ Sk ) |
26 | | opkelssetkg 4269 |
. . . . . . . . . 10
⊢ ((x ∈ V ∧ A ∈ V) → (⟪x, A⟫
∈ Sk ↔ x ⊆ A)) |
27 | 20, 24, 26 | mp2an 653 |
. . . . . . . . 9
⊢ (⟪x, A⟫
∈ Sk ↔ x ⊆ A) |
28 | 23, 25, 27 | 3bitri 262 |
. . . . . . . 8
⊢
(⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins3k SIk Sk ↔ x ⊆ A) |
29 | 22, 28 | bibi12i 306 |
. . . . . . 7
⊢
((⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins2k Sk ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins3k SIk Sk ) ↔ (x ∈ B ↔ x ⊆ A)) |
30 | 29 | notbii 287 |
. . . . . 6
⊢ (¬
(⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins2k Sk ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ∈ Ins3k SIk Sk ) ↔ ¬ (x ∈ B ↔ x ⊆ A)) |
31 | 14, 15, 30 | 3bitri 262 |
. . . . 5
⊢ (∃t(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ ¬ (x ∈ B ↔ x ⊆ A)) |
32 | 31 | exbii 1582 |
. . . 4
⊢ (∃x∃t(t = {{{x}}}
∧ ⟪t, ⟪{A},
B⟫⟫ ∈ ( Ins2k Sk ⊕ Ins3k SIk Sk )) ↔ ∃x ¬
(x ∈
B ↔ x ⊆ A)) |
33 | 2, 10, 32 | 3bitri 262 |
. . 3
⊢ (⟪{A}, B⟫
∈ (( Ins2k Sk ⊕ Ins3k SIk Sk ) “k ℘1℘11c) ↔ ∃x ¬
(x ∈
B ↔ x ⊆ A)) |
34 | 33 | notbii 287 |
. 2
⊢ (¬
⟪{A}, B⟫ ∈ ((
Ins2k Sk ⊕ Ins3k SIk Sk ) “k ℘1℘11c) ↔ ¬
∃x ¬
(x ∈
B ↔ x ⊆ A)) |
35 | 1 | elcompl 3226 |
. 2
⊢ (⟪{A}, B⟫
∈ ∼ (( Ins2k Sk ⊕ Ins3k SIk Sk ) “k ℘1℘11c) ↔ ¬
⟪{A}, B⟫ ∈ ((
Ins2k Sk ⊕ Ins3k SIk Sk ) “k ℘1℘11c)) |
36 | | df-pw 3725 |
. . . 4
⊢ ℘A =
{x ∣
x ⊆
A} |
37 | 36 | eqeq2i 2363 |
. . 3
⊢ (B = ℘A ↔ B =
{x ∣
x ⊆
A}) |
38 | | abeq2 2459 |
. . 3
⊢ (B = {x ∣ x ⊆ A} ↔
∀x(x ∈ B ↔
x ⊆
A)) |
39 | | alex 1572 |
. . 3
⊢ (∀x(x ∈ B ↔ x ⊆ A) ↔
¬ ∃x
¬ (x ∈ B ↔
x ⊆
A)) |
40 | 37, 38, 39 | 3bitri 262 |
. 2
⊢ (B = ℘A ↔ ¬ ∃x ¬
(x ∈
B ↔ x ⊆ A)) |
41 | 34, 35, 40 | 3bitr4i 268 |
1
⊢ (⟪{A}, B⟫
∈ ∼ (( Ins2k Sk ⊕ Ins3k SIk Sk ) “k ℘1℘11c) ↔
B = ℘A) |