NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  eqpwrelk GIF version

Theorem eqpwrelk 4479
Description: Represent equality to power class via a Kuratowski relationship. (Contributed by SF, 26-Jan-2015.)
Hypotheses
Ref Expression
eqpwrelk.1 A V
eqpwrelk.2 B V
Assertion
Ref Expression
eqpwrelk (⟪{A}, B ∼ (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ B = A)

Proof of Theorem eqpwrelk
Dummy variables x t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opkex 4114 . . . . 5 ⟪{A}, B V
21elimak 4260 . . . 4 (⟪{A}, B (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ t 1 11ct, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk ))
3 elpw121c 4149 . . . . . . . 8 (t 111cx t = {{{x}}})
43anbi1i 676 . . . . . . 7 ((t 111c t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ (x t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
5 19.41v 1901 . . . . . . 7 (x(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ (x t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
64, 5bitr4i 243 . . . . . 6 ((t 111c t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ x(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
76exbii 1582 . . . . 5 (t(t 111c t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ tx(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
8 df-rex 2621 . . . . 5 (t 1 11ct, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk ) ↔ t(t 111c t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
9 excom 1741 . . . . 5 (xt(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ tx(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
107, 8, 93bitr4i 268 . . . 4 (t 1 11ct, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk ) ↔ xt(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
11 snex 4112 . . . . . . 7 {{{x}}} V
12 opkeq1 4060 . . . . . . . 8 (t = {{{x}}} → ⟪t, ⟪{A}, B⟫⟫ = ⟪{{{x}}}, ⟪{A}, B⟫⟫)
1312eleq1d 2419 . . . . . . 7 (t = {{{x}}} → (⟪t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk ) ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )))
1411, 13ceqsexv 2895 . . . . . 6 (t(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk ))
15 elsymdif 3224 . . . . . 6 (⟪{{{x}}}, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk ) ↔ ¬ (⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins2k Sk ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins3k SIk Sk ))
16 snex 4112 . . . . . . . . . 10 {x} V
17 snex 4112 . . . . . . . . . 10 {A} V
18 eqpwrelk.2 . . . . . . . . . 10 B V
1916, 17, 18otkelins2k 4256 . . . . . . . . 9 (⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins2k Sk ↔ ⟪{x}, B Sk )
20 vex 2863 . . . . . . . . . 10 x V
2120, 18elssetk 4271 . . . . . . . . 9 (⟪{x}, B Skx B)
2219, 21bitri 240 . . . . . . . 8 (⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins2k Skx B)
2316, 17, 18otkelins3k 4257 . . . . . . . . 9 (⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins3k SIk Sk ↔ ⟪{x}, {A}⟫ SIk Sk )
24 eqpwrelk.1 . . . . . . . . . 10 A V
2520, 24opksnelsik 4266 . . . . . . . . 9 (⟪{x}, {A}⟫ SIk Sk ↔ ⟪x, A Sk )
26 opkelssetkg 4269 . . . . . . . . . 10 ((x V A V) → (⟪x, A Skx A))
2720, 24, 26mp2an 653 . . . . . . . . 9 (⟪x, A Skx A)
2823, 25, 273bitri 262 . . . . . . . 8 (⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins3k SIk Skx A)
2922, 28bibi12i 306 . . . . . . 7 ((⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins2k Sk ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins3k SIk Sk ) ↔ (x Bx A))
3029notbii 287 . . . . . 6 (¬ (⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins2k Sk ↔ ⟪{{{x}}}, ⟪{A}, B⟫⟫ Ins3k SIk Sk ) ↔ ¬ (x Bx A))
3114, 15, 303bitri 262 . . . . 5 (t(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ ¬ (x Bx A))
3231exbii 1582 . . . 4 (xt(t = {{{x}}} t, ⟪{A}, B⟫⟫ ( Ins2k SkIns3k SIk Sk )) ↔ x ¬ (x Bx A))
332, 10, 323bitri 262 . . 3 (⟪{A}, B (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ x ¬ (x Bx A))
3433notbii 287 . 2 (¬ ⟪{A}, B (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ ¬ x ¬ (x Bx A))
351elcompl 3226 . 2 (⟪{A}, B ∼ (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ ¬ ⟪{A}, B (( Ins2k SkIns3k SIk Sk ) “k 111c))
36 df-pw 3725 . . . 4 A = {x x A}
3736eqeq2i 2363 . . 3 (B = AB = {x x A})
38 abeq2 2459 . . 3 (B = {x x A} ↔ x(x Bx A))
39 alex 1572 . . 3 (x(x Bx A) ↔ ¬ x ¬ (x Bx A))
4037, 38, 393bitri 262 . 2 (B = A ↔ ¬ x ¬ (x Bx A))
4134, 35, 403bitr4i 268 1 (⟪{A}, B ∼ (( Ins2k SkIns3k SIk Sk ) “k 111c) ↔ B = A)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 176   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206  csymdif 3210   wss 3258  cpw 3723  {csn 3738  copk 4058  1cc1c 4135  1cpw1 4136   Ins2k cins2k 4177   Ins3k cins3k 4178  k cimak 4180   SIk csik 4182   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-pr 3743  df-opk 4059  df-1c 4137  df-pw1 4138  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-sik 4193  df-ssetk 4194
This theorem is referenced by:  nnpweqlem1  4523
  Copyright terms: Public domain W3C validator