NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funsex GIF version

Theorem funsex 5829
Description: The class of all functions forms a set. (Contributed by SF, 18-Feb-2015.)
Assertion
Ref Expression
funsex Funs V

Proof of Theorem funsex
Dummy variables x f y z p q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-funs 5761 . . 3 Funs = {f Fun f}
2 elima1c 4948 . . . . . . . 8 (f ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) ↔ x{x}, f ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c))
3 snex 4112 . . . . . . . . . . . 12 {x} V
4 vex 2863 . . . . . . . . . . . 12 f V
53, 4opex 4589 . . . . . . . . . . 11 {x}, f V
65elcompl 3226 . . . . . . . . . 10 ({x}, f ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) ↔ ¬ {x}, f ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c))
7 elima1c 4948 . . . . . . . . . . . 12 ({x}, f ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) ↔ z{z}, {x}, f ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c))
8 elima1c 4948 . . . . . . . . . . . . . . . 16 ({z}, {x}, f (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) ↔ y{y}, {z}, {x}, f ( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ))
9 eldif 3222 . . . . . . . . . . . . . . . . . 18 ({y}, {z}, {x}, f ( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) ↔ ({y}, {z}, {x}, f Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ¬ {y}, {z}, {x}, f Ins3 I ))
10 snex 4112 . . . . . . . . . . . . . . . . . . . . 21 {z} V
1110otelins2 5792 . . . . . . . . . . . . . . . . . . . 20 ({y}, {z}, {x}, f Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ↔ {y}, {x}, f (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ))
12 vex 2863 . . . . . . . . . . . . . . . . . . . . . . 23 x V
13 vex 2863 . . . . . . . . . . . . . . . . . . . . . . 23 y V
1412, 13opex 4589 . . . . . . . . . . . . . . . . . . . . . 22 x, y V
1514, 4opelssetsn 4761 . . . . . . . . . . . . . . . . . . . . 21 ({x, y}, f S x, y f)
16 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . 24 (p( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ){y}, {x}, fp, {y}, {x}, f ( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ))
17 elin 3220 . . . . . . . . . . . . . . . . . . . . . . . . 25 (p, {y}, {x}, f ( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) ↔ (p, {y}, {x}, f Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) p, {y}, {x}, f Ins2 Ins2 2nd ))
184oqelins4 5795 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (p, {y}, {x}, f Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ↔ p, {y}, {x} ((1stSI3 (2nd ⊗ 1st )) “ 1c))
19 elima1c 4948 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (p, {y}, {x} ((1stSI3 (2nd ⊗ 1st )) “ 1c) ↔ q{q}, p, {y}, {x} (1stSI3 (2nd ⊗ 1st )))
20 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ({q}, p, {y}, {x} (1stSI3 (2nd ⊗ 1st )) ↔ ({q}, p 1st {q}, {y}, {x} SI3 (2nd ⊗ 1st )))
21 opelcnv 4894 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ({q}, p 1stp, {q} 1st )
22 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (p1st {q} ↔ p, {q} 1st )
2321, 22bitr4i 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ({q}, p 1stp1st {q})
24 vex 2863 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 q V
2524, 13, 12otsnelsi3 5806 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ({q}, {y}, {x} SI3 (2nd ⊗ 1st ) ↔ q, y, x (2nd ⊗ 1st ))
26 oteltxp 5783 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (q, y, x (2nd ⊗ 1st ) ↔ (q, y 2nd q, x 1st ))
27 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (q1st xq, x 1st )
28 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 (q2nd yq, y 2nd )
2927, 28anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((q1st x q2nd y) ↔ (q, x 1st q, y 2nd ))
30 ancom 437 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((q, x 1st q, y 2nd ) ↔ (q, y 2nd q, x 1st ))
3129, 30bitr2i 241 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((q, y 2nd q, x 1st ) ↔ (q1st x q2nd y))
3212, 13op1st2nd 5791 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((q1st x q2nd y) ↔ q = x, y)
3326, 31, 323bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (q, y, x (2nd ⊗ 1st ) ↔ q = x, y)
3425, 33bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ({q}, {y}, {x} SI3 (2nd ⊗ 1st ) ↔ q = x, y)
3523, 34anbi12ci 679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (({q}, p 1st {q}, {y}, {x} SI3 (2nd ⊗ 1st )) ↔ (q = x, y p1st {q}))
3620, 35bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ({q}, p, {y}, {x} (1stSI3 (2nd ⊗ 1st )) ↔ (q = x, y p1st {q}))
3736exbii 1582 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (q{q}, p, {y}, {x} (1stSI3 (2nd ⊗ 1st )) ↔ q(q = x, y p1st {q}))
38 sneq 3745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (q = x, y → {q} = {x, y})
3938breq2d 4652 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (q = x, y → (p1st {q} ↔ p1st {x, y}))
4014, 39ceqsexv 2895 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (q(q = x, y p1st {q}) ↔ p1st {x, y})
4119, 37, 403bitri 262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (p, {y}, {x} ((1stSI3 (2nd ⊗ 1st )) “ 1c) ↔ p1st {x, y})
4218, 41bitri 240 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (p, {y}, {x}, f Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ↔ p1st {x, y})
433otelins2 5792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (p, {x}, f Ins2 2ndp, f 2nd )
44 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 {y} V
4544otelins2 5792 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (p, {y}, {x}, f Ins2 Ins2 2ndp, {x}, f Ins2 2nd )
46 df-br 4641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (p2nd fp, f 2nd )
4743, 45, 463bitr4i 268 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (p, {y}, {x}, f Ins2 Ins2 2ndp2nd f)
4842, 47anbi12i 678 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((p, {y}, {x}, f Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) p, {y}, {x}, f Ins2 Ins2 2nd ) ↔ (p1st {x, y} p2nd f))
4917, 48bitri 240 . . . . . . . . . . . . . . . . . . . . . . . 24 (p, {y}, {x}, f ( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) ↔ (p1st {x, y} p2nd f))
50 snex 4112 . . . . . . . . . . . . . . . . . . . . . . . . 25 {x, y} V
5150, 4op1st2nd 5791 . . . . . . . . . . . . . . . . . . . . . . . 24 ((p1st {x, y} p2nd f) ↔ p = {x, y}, f)
5216, 49, 513bitri 262 . . . . . . . . . . . . . . . . . . . . . . 23 (p( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ){y}, {x}, fp = {x, y}, f)
5352rexbii 2640 . . . . . . . . . . . . . . . . . . . . . 22 (p S p( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ){y}, {x}, fp S p = {x, y}, f)
54 elima 4755 . . . . . . . . . . . . . . . . . . . . . 22 ({y}, {x}, f (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ↔ p S p( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ){y}, {x}, f)
55 risset 2662 . . . . . . . . . . . . . . . . . . . . . 22 ({x, y}, f S p S p = {x, y}, f)
5653, 54, 553bitr4i 268 . . . . . . . . . . . . . . . . . . . . 21 ({y}, {x}, f (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ↔ {x, y}, f S )
57 df-br 4641 . . . . . . . . . . . . . . . . . . . . 21 (xfyx, y f)
5815, 56, 573bitr4i 268 . . . . . . . . . . . . . . . . . . . 20 ({y}, {x}, f (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ↔ xfy)
5911, 58bitri 240 . . . . . . . . . . . . . . . . . . 19 ({y}, {z}, {x}, f Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ↔ xfy)
605otelins3 5793 . . . . . . . . . . . . . . . . . . . . 21 ({y}, {z}, {x}, f Ins3 I ↔ {y}, {z} I )
6110ideq 4871 . . . . . . . . . . . . . . . . . . . . . 22 ({y} I {z} ↔ {y} = {z})
62 df-br 4641 . . . . . . . . . . . . . . . . . . . . . 22 ({y} I {z} ↔ {y}, {z} I )
6313sneqb 3877 . . . . . . . . . . . . . . . . . . . . . 22 ({y} = {z} ↔ y = z)
6461, 62, 633bitr3i 266 . . . . . . . . . . . . . . . . . . . . 21 ({y}, {z} I ↔ y = z)
6560, 64bitri 240 . . . . . . . . . . . . . . . . . . . 20 ({y}, {z}, {x}, f Ins3 I ↔ y = z)
6665notbii 287 . . . . . . . . . . . . . . . . . . 19 {y}, {z}, {x}, f Ins3 I ↔ ¬ y = z)
6759, 66anbi12i 678 . . . . . . . . . . . . . . . . . 18 (({y}, {z}, {x}, f Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) ¬ {y}, {z}, {x}, f Ins3 I ) ↔ (xfy ¬ y = z))
689, 67bitri 240 . . . . . . . . . . . . . . . . 17 ({y}, {z}, {x}, f ( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) ↔ (xfy ¬ y = z))
6968exbii 1582 . . . . . . . . . . . . . . . 16 (y{y}, {z}, {x}, f ( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) ↔ y(xfy ¬ y = z))
708, 69bitri 240 . . . . . . . . . . . . . . 15 ({z}, {x}, f (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) ↔ y(xfy ¬ y = z))
7170notbii 287 . . . . . . . . . . . . . 14 {z}, {x}, f (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) ↔ ¬ y(xfy ¬ y = z))
7210, 5opex 4589 . . . . . . . . . . . . . . 15 {z}, {x}, f V
7372elcompl 3226 . . . . . . . . . . . . . 14 ({z}, {x}, f ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) ↔ ¬ {z}, {x}, f (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c))
74 exanali 1585 . . . . . . . . . . . . . . 15 (y(xfy ¬ y = z) ↔ ¬ y(xfyy = z))
7574con2bii 322 . . . . . . . . . . . . . 14 (y(xfyy = z) ↔ ¬ y(xfy ¬ y = z))
7671, 73, 753bitr4i 268 . . . . . . . . . . . . 13 ({z}, {x}, f ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) ↔ y(xfyy = z))
7776exbii 1582 . . . . . . . . . . . 12 (z{z}, {x}, f ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) ↔ zy(xfyy = z))
787, 77bitri 240 . . . . . . . . . . 11 ({x}, f ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) ↔ zy(xfyy = z))
7978notbii 287 . . . . . . . . . 10 {x}, f ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) ↔ ¬ zy(xfyy = z))
806, 79bitri 240 . . . . . . . . 9 ({x}, f ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) ↔ ¬ zy(xfyy = z))
8180exbii 1582 . . . . . . . 8 (x{x}, f ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) ↔ x ¬ zy(xfyy = z))
822, 81bitri 240 . . . . . . 7 (f ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) ↔ x ¬ zy(xfyy = z))
8382notbii 287 . . . . . 6 f ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) ↔ ¬ x ¬ zy(xfyy = z))
844elcompl 3226 . . . . . 6 (f ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) ↔ ¬ f ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c))
85 alex 1572 . . . . . 6 (xzy(xfyy = z) ↔ ¬ x ¬ zy(xfyy = z))
8683, 84, 853bitr4i 268 . . . . 5 (f ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) ↔ xzy(xfyy = z))
87 dffun3 5121 . . . . 5 (Fun fxzy(xfyy = z))
8886, 87bitr4i 243 . . . 4 (f ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) ↔ Fun f)
8988abbi2i 2465 . . 3 ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) = {f Fun f}
901, 89eqtr4i 2376 . 2 Funs = ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c)
91 1stex 4740 . . . . . . . . . . . . . . . 16 1st V
9291cnvex 5103 . . . . . . . . . . . . . . 15 1st V
93 2ndex 5113 . . . . . . . . . . . . . . . . 17 2nd V
9493, 91txpex 5786 . . . . . . . . . . . . . . . 16 (2nd ⊗ 1st ) V
9594si3ex 5807 . . . . . . . . . . . . . . 15 SI3 (2nd ⊗ 1st ) V
9692, 95txpex 5786 . . . . . . . . . . . . . 14 (1stSI3 (2nd ⊗ 1st )) V
97 1cex 4143 . . . . . . . . . . . . . 14 1c V
9896, 97imaex 4748 . . . . . . . . . . . . 13 ((1stSI3 (2nd ⊗ 1st )) “ 1c) V
9998ins4ex 5800 . . . . . . . . . . . 12 Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) V
10093ins2ex 5798 . . . . . . . . . . . . 13 Ins2 2nd V
101100ins2ex 5798 . . . . . . . . . . . 12 Ins2 Ins2 2nd V
10299, 101inex 4106 . . . . . . . . . . 11 ( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) V
103 ssetex 4745 . . . . . . . . . . 11 S V
104102, 103imaex 4748 . . . . . . . . . 10 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) V
105104ins2ex 5798 . . . . . . . . 9 Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) V
106 idex 5505 . . . . . . . . . 10 I V
107106ins3ex 5799 . . . . . . . . 9 Ins3 I V
108105, 107difex 4108 . . . . . . . 8 ( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) V
109108, 97imaex 4748 . . . . . . 7 (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) V
110109complex 4105 . . . . . 6 ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) V
111110, 97imaex 4748 . . . . 5 ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) V
112111complex 4105 . . . 4 ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) V
113112, 97imaex 4748 . . 3 ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) V
114113complex 4105 . 2 ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((1stSI3 (2nd ⊗ 1st )) “ 1c) ∩ Ins2 Ins2 2nd ) “ S ) Ins3 I ) “ 1c) “ 1c) “ 1c) V
11590, 114eqeltri 2423 1 Funs V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   wa 358  wal 1540  wex 1541   = wceq 1642   wcel 1710  {cab 2339  wrex 2616  Vcvv 2860  ccompl 3206   cdif 3207  cin 3209  {csn 3738  1cc1c 4135  cop 4562   class class class wbr 4640  1st c1st 4718   S csset 4720  cima 4723   I cid 4764  ccnv 4772  Fun wfun 4776  2nd c2nd 4784  ctxp 5736   Ins2 cins2 5750   Ins3 cins3 5752   Ins4 cins4 5756   SI3 csi3 5758   Funs cfuns 5760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-cnv 4786  df-fun 4790  df-2nd 4798  df-txp 5737  df-ins2 5751  df-ins3 5753  df-ins4 5757  df-si3 5759  df-funs 5761
This theorem is referenced by:  fnsex  5833  mapexi  6004  pmex  6006  fnpm  6009
  Copyright terms: Public domain W3C validator