Step | Hyp | Ref
| Expression |
1 | | df-funs 5761 |
. . 3
⊢ Funs = {f ∣ Fun f} |
2 | | elima1c 4948 |
. . . . . . . 8
⊢ (f ∈ ( ∼ (
∼ (( Ins2 (( Ins4
((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ↔ ∃x⟨{x}, f⟩ ∈ ∼ ( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c)) |
3 | | snex 4112 |
. . . . . . . . . . . 12
⊢ {x} ∈
V |
4 | | vex 2863 |
. . . . . . . . . . . 12
⊢ f ∈
V |
5 | 3, 4 | opex 4589 |
. . . . . . . . . . 11
⊢ ⟨{x}, f⟩ ∈ V |
6 | 5 | elcompl 3226 |
. . . . . . . . . 10
⊢ (⟨{x}, f⟩ ∈ ∼ ( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ↔ ¬ ⟨{x}, f⟩ ∈ ( ∼ ((
Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c)) |
7 | | elima1c 4948 |
. . . . . . . . . . . 12
⊢ (⟨{x}, f⟩ ∈ ( ∼ (( Ins2 ((
Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ↔ ∃z⟨{z}, ⟨{x}, f⟩⟩ ∈ ∼ (( Ins2 ((
Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “
1c)) |
8 | | elima1c 4948 |
. . . . . . . . . . . . . . . 16
⊢ (⟨{z}, ⟨{x}, f⟩⟩ ∈ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ↔
∃y⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I )) |
9 | | eldif 3222 |
. . . . . . . . . . . . . . . . . 18
⊢ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) ↔ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∧
¬ ⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins3 I )) |
10 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {z} ∈
V |
11 | 10 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ↔ ⟨{y}, ⟨{x}, f⟩⟩ ∈ (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S )) |
12 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ x ∈
V |
13 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ y ∈
V |
14 | 12, 13 | opex 4589 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ⟨x, y⟩ ∈ V |
15 | 14, 4 | opelssetsn 4761 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{⟨x, y⟩}, f⟩ ∈ S ↔ ⟨x, y⟩ ∈ f) |
16 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (p( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd
)⟨{y},
⟨{x},
f⟩⟩ ↔ ⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd
)) |
17 | | elin 3220 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
↔ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∧ ⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 Ins2 2nd
)) |
18 | 4 | oqelins4 5795 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ↔ ⟨p, ⟨{y}, {x}⟩⟩ ∈ ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c)) |
19 | | elima1c 4948 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (⟨p, ⟨{y}, {x}⟩⟩ ∈ ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ↔ ∃q⟨{q}, ⟨p, ⟨{y}, {x}⟩⟩⟩ ∈ (◡1st ⊗ SI3 (2nd ⊗
1st ))) |
20 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (⟨{q}, ⟨p, ⟨{y}, {x}⟩⟩⟩ ∈ (◡1st ⊗ SI3 (2nd ⊗
1st )) ↔ (⟨{q}, p⟩ ∈ ◡1st ∧ ⟨{q}, ⟨{y}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st ))) |
21 | | opelcnv 4894 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (⟨{q}, p⟩ ∈ ◡1st ↔ ⟨p, {q}⟩ ∈ 1st ) |
22 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (p1st {q} ↔ ⟨p, {q}⟩ ∈ 1st ) |
23 | 21, 22 | bitr4i 243 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (⟨{q}, p⟩ ∈ ◡1st ↔ p1st {q}) |
24 | | vex 2863 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ q ∈
V |
25 | 24, 13, 12 | otsnelsi3 5806 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (⟨{q}, ⟨{y}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st ) ↔ ⟨q, ⟨y, x⟩⟩ ∈ (2nd ⊗ 1st
)) |
26 | | oteltxp 5783 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ (⟨q, ⟨y, x⟩⟩ ∈
(2nd ⊗ 1st ) ↔ (⟨q, y⟩ ∈ 2nd ∧
⟨q,
x⟩ ∈ 1st )) |
27 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (q1st x ↔ ⟨q, x⟩ ∈
1st ) |
28 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. 35
⊢ (q2nd y ↔ ⟨q, y⟩ ∈
2nd ) |
29 | 27, 28 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((q1st x ∧ q2nd y) ↔ (⟨q, x⟩ ∈ 1st ∧
⟨q,
y⟩ ∈ 2nd )) |
30 | | ancom 437 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
34
⊢ ((⟨q, x⟩ ∈ 1st ∧
⟨q,
y⟩ ∈ 2nd ) ↔ (⟨q, y⟩ ∈ 2nd ∧
⟨q,
x⟩ ∈ 1st )) |
31 | 29, 30 | bitr2i 241 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((⟨q, y⟩ ∈ 2nd ∧
⟨q,
x⟩ ∈ 1st ) ↔ (q1st x ∧ q2nd y)) |
32 | 12, 13 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
33
⊢ ((q1st x ∧ q2nd y) ↔ q =
⟨x,
y⟩) |
33 | 26, 31, 32 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
32
⊢ (⟨q, ⟨y, x⟩⟩ ∈
(2nd ⊗ 1st ) ↔ q = ⟨x, y⟩) |
34 | 25, 33 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
31
⊢ (⟨{q}, ⟨{y}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st ) ↔ q = ⟨x, y⟩) |
35 | 23, 34 | anbi12ci 679 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ ((⟨{q}, p⟩ ∈ ◡1st ∧ ⟨{q}, ⟨{y}, {x}⟩⟩ ∈ SI3 (2nd ⊗
1st )) ↔ (q = ⟨x, y⟩ ∧ p1st {q})) |
36 | 20, 35 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (⟨{q}, ⟨p, ⟨{y}, {x}⟩⟩⟩ ∈ (◡1st ⊗ SI3 (2nd ⊗
1st )) ↔ (q = ⟨x, y⟩ ∧ p1st {q})) |
37 | 36 | exbii 1582 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (∃q⟨{q}, ⟨p, ⟨{y}, {x}⟩⟩⟩ ∈ (◡1st ⊗ SI3 (2nd ⊗
1st )) ↔ ∃q(q = ⟨x, y⟩ ∧ p1st {q})) |
38 | | sneq 3745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (q = ⟨x, y⟩ → {q} =
{⟨x,
y⟩}) |
39 | 38 | breq2d 4652 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (q = ⟨x, y⟩ → (p1st {q} ↔ p1st {⟨x, y⟩})) |
40 | 14, 39 | ceqsexv 2895 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (∃q(q = ⟨x, y⟩ ∧ p1st {q}) ↔ p1st {⟨x, y⟩}) |
41 | 19, 37, 40 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨p, ⟨{y}, {x}⟩⟩ ∈ ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ↔ p1st {⟨x, y⟩}) |
42 | 18, 41 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ↔ p1st {⟨x, y⟩}) |
43 | 3 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨p, ⟨{x}, f⟩⟩ ∈ Ins2 2nd ↔ ⟨p, f⟩ ∈ 2nd ) |
44 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ {y} ∈
V |
45 | 44 | otelins2 5792 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 Ins2 2nd ↔ ⟨p, ⟨{x}, f⟩⟩ ∈ Ins2 2nd ) |
46 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (p2nd f ↔ ⟨p, f⟩ ∈
2nd ) |
47 | 43, 45, 46 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 Ins2 2nd ↔ p2nd f) |
48 | 42, 47 | anbi12i 678 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∧ ⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 Ins2 2nd )
↔ (p1st {⟨x, y⟩} ∧ p2nd f)) |
49 | 17, 48 | bitri 240 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (⟨p, ⟨{y}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
↔ (p1st {⟨x, y⟩} ∧ p2nd f)) |
50 | | snex 4112 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ {⟨x, y⟩} ∈ V |
51 | 50, 4 | op1st2nd 5791 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((p1st {⟨x, y⟩} ∧ p2nd f) ↔ p =
⟨{⟨x, y⟩}, f⟩) |
52 | 16, 49, 51 | 3bitri 262 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (p( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd
)⟨{y},
⟨{x},
f⟩⟩ ↔ p =
⟨{⟨x, y⟩}, f⟩) |
53 | 52 | rexbii 2640 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (∃p ∈ S p( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd
)⟨{y},
⟨{x},
f⟩⟩ ↔ ∃p ∈ S p = ⟨{⟨x, y⟩}, f⟩) |
54 | | elima 4755 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟨{y}, ⟨{x}, f⟩⟩ ∈ (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ↔ ∃p ∈ S p( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd
)⟨{y},
⟨{x},
f⟩⟩) |
55 | | risset 2662 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (⟨{⟨x, y⟩}, f⟩ ∈ S ↔ ∃p ∈ S p = ⟨{⟨x, y⟩}, f⟩) |
56 | 53, 54, 55 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{y}, ⟨{x}, f⟩⟩ ∈ (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ↔ ⟨{⟨x, y⟩}, f⟩ ∈ S ) |
57 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (xfy ↔ ⟨x, y⟩ ∈ f) |
58 | 15, 56, 57 | 3bitr4i 268 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{y}, ⟨{x}, f⟩⟩ ∈ (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ↔ xfy) |
59 | 11, 58 | bitri 240 |
. . . . . . . . . . . . . . . . . . 19
⊢ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ↔ xfy) |
60 | 5 | otelins3 5793 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins3 I ↔ ⟨{y}, {z}⟩ ∈ I ) |
61 | 10 | ideq 4871 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({y} I {z} ↔
{y} = {z}) |
62 | | df-br 4641 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({y} I {z} ↔
⟨{y},
{z}⟩
∈ I ) |
63 | 13 | sneqb 3877 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ({y} = {z} ↔
y = z) |
64 | 61, 62, 63 | 3bitr3i 266 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (⟨{y}, {z}⟩ ∈ I ↔ y =
z) |
65 | 60, 64 | bitri 240 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins3 I ↔
y = z) |
66 | 65 | notbii 287 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬ ⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins3 I ↔ ¬
y = z) |
67 | 59, 66 | anbi12i 678 |
. . . . . . . . . . . . . . . . . 18
⊢ ((⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∧
¬ ⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ Ins3 I ) ↔ (xfy ∧ ¬ y = z)) |
68 | 9, 67 | bitri 240 |
. . . . . . . . . . . . . . . . 17
⊢ (⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) ↔ (xfy ∧ ¬ y = z)) |
69 | 68 | exbii 1582 |
. . . . . . . . . . . . . . . 16
⊢ (∃y⟨{y}, ⟨{z}, ⟨{x}, f⟩⟩⟩ ∈ ( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) ↔ ∃y(xfy ∧ ¬ y = z)) |
70 | 8, 69 | bitri 240 |
. . . . . . . . . . . . . . 15
⊢ (⟨{z}, ⟨{x}, f⟩⟩ ∈ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ↔
∃y(xfy ∧ ¬ y =
z)) |
71 | 70 | notbii 287 |
. . . . . . . . . . . . . 14
⊢ (¬ ⟨{z}, ⟨{x}, f⟩⟩ ∈ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ↔
¬ ∃y(xfy ∧ ¬ y =
z)) |
72 | 10, 5 | opex 4589 |
. . . . . . . . . . . . . . 15
⊢ ⟨{z}, ⟨{x}, f⟩⟩ ∈
V |
73 | 72 | elcompl 3226 |
. . . . . . . . . . . . . 14
⊢ (⟨{z}, ⟨{x}, f⟩⟩ ∈ ∼ ((
Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ↔
¬ ⟨{z}, ⟨{x}, f⟩⟩ ∈ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “
1c)) |
74 | | exanali 1585 |
. . . . . . . . . . . . . . 15
⊢ (∃y(xfy ∧ ¬ y = z) ↔
¬ ∀y(xfy →
y = z)) |
75 | 74 | con2bii 322 |
. . . . . . . . . . . . . 14
⊢ (∀y(xfy → y =
z) ↔ ¬ ∃y(xfy ∧ ¬ y = z)) |
76 | 71, 73, 75 | 3bitr4i 268 |
. . . . . . . . . . . . 13
⊢ (⟨{z}, ⟨{x}, f⟩⟩ ∈ ∼ ((
Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ↔
∀y(xfy →
y = z)) |
77 | 76 | exbii 1582 |
. . . . . . . . . . . 12
⊢ (∃z⟨{z}, ⟨{x}, f⟩⟩ ∈ ∼ ((
Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ↔
∃z∀y(xfy → y =
z)) |
78 | 7, 77 | bitri 240 |
. . . . . . . . . . 11
⊢ (⟨{x}, f⟩ ∈ ( ∼ (( Ins2 ((
Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ↔ ∃z∀y(xfy →
y = z)) |
79 | 78 | notbii 287 |
. . . . . . . . . 10
⊢ (¬ ⟨{x}, f⟩ ∈ ( ∼ (( Ins2 ((
Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ↔ ¬ ∃z∀y(xfy →
y = z)) |
80 | 6, 79 | bitri 240 |
. . . . . . . . 9
⊢ (⟨{x}, f⟩ ∈ ∼ ( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ↔ ¬ ∃z∀y(xfy →
y = z)) |
81 | 80 | exbii 1582 |
. . . . . . . 8
⊢ (∃x⟨{x}, f⟩ ∈ ∼ ( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ↔ ∃x ¬ ∃z∀y(xfy →
y = z)) |
82 | 2, 81 | bitri 240 |
. . . . . . 7
⊢ (f ∈ ( ∼ (
∼ (( Ins2 (( Ins4
((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ↔ ∃x ¬ ∃z∀y(xfy → y =
z)) |
83 | 82 | notbii 287 |
. . . . . 6
⊢ (¬ f ∈ ( ∼ (
∼ (( Ins2 (( Ins4
((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ↔ ¬ ∃x ¬ ∃z∀y(xfy → y =
z)) |
84 | 4 | elcompl 3226 |
. . . . . 6
⊢ (f ∈ ∼ ( ∼
( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ↔ ¬ f ∈ ( ∼ (
∼ (( Ins2 (( Ins4
((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c)) |
85 | | alex 1572 |
. . . . . 6
⊢ (∀x∃z∀y(xfy → y =
z) ↔ ¬ ∃x ¬ ∃z∀y(xfy → y =
z)) |
86 | 83, 84, 85 | 3bitr4i 268 |
. . . . 5
⊢ (f ∈ ∼ ( ∼
( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ↔ ∀x∃z∀y(xfy → y =
z)) |
87 | | dffun3 5121 |
. . . . 5
⊢ (Fun f ↔ ∀x∃z∀y(xfy → y =
z)) |
88 | 86, 87 | bitr4i 243 |
. . . 4
⊢ (f ∈ ∼ ( ∼
( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ↔ Fun f) |
89 | 88 | eqabi 2465 |
. . 3
⊢ ∼ ( ∼ (
∼ (( Ins2 (( Ins4
((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) = {f ∣ Fun f} |
90 | 1, 89 | eqtr4i 2376 |
. 2
⊢ Funs = ∼ ( ∼ ( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) |
91 | | 1stex 4740 |
. . . . . . . . . . . . . . . 16
⊢ 1st
∈ V |
92 | 91 | cnvex 5103 |
. . . . . . . . . . . . . . 15
⊢ ◡1st ∈ V |
93 | | 2ndex 5113 |
. . . . . . . . . . . . . . . . 17
⊢ 2nd
∈ V |
94 | 93, 91 | txpex 5786 |
. . . . . . . . . . . . . . . 16
⊢ (2nd
⊗ 1st ) ∈
V |
95 | 94 | si3ex 5807 |
. . . . . . . . . . . . . . 15
⊢ SI3 (2nd ⊗
1st ) ∈ V |
96 | 92, 95 | txpex 5786 |
. . . . . . . . . . . . . 14
⊢ (◡1st ⊗ SI3 (2nd ⊗
1st )) ∈ V |
97 | | 1cex 4143 |
. . . . . . . . . . . . . 14
⊢
1c ∈
V |
98 | 96, 97 | imaex 4748 |
. . . . . . . . . . . . 13
⊢ ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∈ V |
99 | 98 | ins4ex 5800 |
. . . . . . . . . . . 12
⊢ Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∈ V |
100 | 93 | ins2ex 5798 |
. . . . . . . . . . . . 13
⊢ Ins2 2nd ∈
V |
101 | 100 | ins2ex 5798 |
. . . . . . . . . . . 12
⊢ Ins2 Ins2 2nd
∈ V |
102 | 99, 101 | inex 4106 |
. . . . . . . . . . 11
⊢ ( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
∈ V |
103 | | ssetex 4745 |
. . . . . . . . . . 11
⊢ S ∈
V |
104 | 102, 103 | imaex 4748 |
. . . . . . . . . 10
⊢ (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∈
V |
105 | 104 | ins2ex 5798 |
. . . . . . . . 9
⊢ Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∈
V |
106 | | idex 5505 |
. . . . . . . . . 10
⊢ I ∈ V |
107 | 106 | ins3ex 5799 |
. . . . . . . . 9
⊢ Ins3 I ∈
V |
108 | 105, 107 | difex 4108 |
. . . . . . . 8
⊢ ( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) ∈
V |
109 | 108, 97 | imaex 4748 |
. . . . . . 7
⊢ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ∈ V |
110 | 109 | complex 4105 |
. . . . . 6
⊢ ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) ∈ V |
111 | 110, 97 | imaex 4748 |
. . . . 5
⊢ ( ∼ (( Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ∈ V |
112 | 111 | complex 4105 |
. . . 4
⊢ ∼ ( ∼ ((
Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) ∈ V |
113 | 112, 97 | imaex 4748 |
. . 3
⊢ ( ∼ ( ∼ ((
Ins2 (( Ins4 ((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ∈ V |
114 | 113 | complex 4105 |
. 2
⊢ ∼ ( ∼ (
∼ (( Ins2 (( Ins4
((◡1st ⊗ SI3 (2nd ⊗
1st )) “ 1c) ∩ Ins2 Ins2 2nd )
“ S ) ∖
Ins3 I ) “ 1c) “
1c) “ 1c) ∈ V |
115 | 90, 114 | eqeltri 2423 |
1
⊢ Funs ∈
V |