NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  enmap1lem4 GIF version

Theorem enmap1lem4 6073
Description: Lemma for enmap2 6069. The converse of W is a function. (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
enmap1lem4.1 W = (s (Am G) (r s))
Assertion
Ref Expression
enmap1lem4 (r:A1-1-ontoB → Fun W)
Distinct variable groups:   G,s   s,r   A,s
Allowed substitution hints:   A(r)   B(s,r)   G(r)   W(s,r)

Proof of Theorem enmap1lem4
Dummy variables x y z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enmap1lem4.1 . . . . . . 7 W = (s (Am G) (r s))
21enmap1lem3 6072 . . . . . 6 (r:A1-1-ontoB → (yWxy = (r x)))
31enmap1lem3 6072 . . . . . 6 (r:A1-1-ontoB → (zWxz = (r x)))
42, 3anim12d 546 . . . . 5 (r:A1-1-ontoB → ((yWx zWx) → (y = (r x) z = (r x))))
5 eqtr3 2372 . . . . 5 ((y = (r x) z = (r x)) → y = z)
64, 5syl6 29 . . . 4 (r:A1-1-ontoB → ((yWx zWx) → y = z))
76alrimiv 1631 . . 3 (r:A1-1-ontoBz((yWx zWx) → y = z))
87alrimivv 1632 . 2 (r:A1-1-ontoBxyz((yWx zWx) → y = z))
9 dffun2 5120 . . 3 (Fun Wxyz((xWy xWz) → y = z))
10 brcnv 4893 . . . . . . 7 (xWyyWx)
11 brcnv 4893 . . . . . . 7 (xWzzWx)
1210, 11anbi12i 678 . . . . . 6 ((xWy xWz) ↔ (yWx zWx))
1312imbi1i 315 . . . . 5 (((xWy xWz) → y = z) ↔ ((yWx zWx) → y = z))
1413albii 1566 . . . 4 (z((xWy xWz) → y = z) ↔ z((yWx zWx) → y = z))
15142albii 1567 . . 3 (xyz((xWy xWz) → y = z) ↔ xyz((yWx zWx) → y = z))
169, 15bitri 240 . 2 (Fun Wxyz((yWx zWx) → y = z))
178, 16sylibr 203 1 (r:A1-1-ontoB → Fun W)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358  wal 1540   = wceq 1642   class class class wbr 4640   ccom 4722  ccnv 4772  Fun wfun 4776  1-1-ontowf1o 4781  (class class class)co 5526   cmpt 5652  m cmap 6000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-map 6002
This theorem is referenced by:  enmap1  6075
  Copyright terms: Public domain W3C validator