![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > lectr | GIF version |
Description: Cardinal less than or equal is transitive. (Contributed by SF, 12-Mar-2015.) |
Ref | Expression |
---|---|
lectr | ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B ≤c C) → A ≤c C)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dflec2 6210 | . . . . 5 ⊢ ((A ∈ NC ∧ B ∈ NC ) → (A ≤c B ↔ ∃x ∈ NC B = (A +c x))) | |
2 | 1 | 3adant3 975 | . . . 4 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (A ≤c B ↔ ∃x ∈ NC B = (A +c x))) |
3 | dflec2 6210 | . . . . 5 ⊢ ((B ∈ NC ∧ C ∈ NC ) → (B ≤c C ↔ ∃y ∈ NC C = (B +c y))) | |
4 | 3 | 3adant1 973 | . . . 4 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (B ≤c C ↔ ∃y ∈ NC C = (B +c y))) |
5 | 2, 4 | anbi12d 691 | . . 3 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B ≤c C) ↔ (∃x ∈ NC B = (A +c x) ∧ ∃y ∈ NC C = (B +c y)))) |
6 | reeanv 2778 | . . 3 ⊢ (∃x ∈ NC ∃y ∈ NC (B = (A +c x) ∧ C = (B +c y)) ↔ (∃x ∈ NC B = (A +c x) ∧ ∃y ∈ NC C = (B +c y))) | |
7 | 5, 6 | syl6bbr 254 | . 2 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B ≤c C) ↔ ∃x ∈ NC ∃y ∈ NC (B = (A +c x) ∧ C = (B +c y)))) |
8 | addceq1 4383 | . . . . . . 7 ⊢ (B = (A +c x) → (B +c y) = ((A +c x) +c y)) | |
9 | addcass 4415 | . . . . . . 7 ⊢ ((A +c x) +c y) = (A +c (x +c y)) | |
10 | 8, 9 | syl6eq 2401 | . . . . . 6 ⊢ (B = (A +c x) → (B +c y) = (A +c (x +c y))) |
11 | 10 | eqeq2d 2364 | . . . . 5 ⊢ (B = (A +c x) → (C = (B +c y) ↔ C = (A +c (x +c y)))) |
12 | 11 | biimpa 470 | . . . 4 ⊢ ((B = (A +c x) ∧ C = (B +c y)) → C = (A +c (x +c y))) |
13 | simp1 955 | . . . . . 6 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → A ∈ NC ) | |
14 | ncaddccl 6144 | . . . . . 6 ⊢ ((x ∈ NC ∧ y ∈ NC ) → (x +c y) ∈ NC ) | |
15 | addlecncs 6209 | . . . . . 6 ⊢ ((A ∈ NC ∧ (x +c y) ∈ NC ) → A ≤c (A +c (x +c y))) | |
16 | 13, 14, 15 | syl2an 463 | . . . . 5 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ (x ∈ NC ∧ y ∈ NC )) → A ≤c (A +c (x +c y))) |
17 | breq2 4643 | . . . . 5 ⊢ (C = (A +c (x +c y)) → (A ≤c C ↔ A ≤c (A +c (x +c y)))) | |
18 | 16, 17 | syl5ibrcom 213 | . . . 4 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ (x ∈ NC ∧ y ∈ NC )) → (C = (A +c (x +c y)) → A ≤c C)) |
19 | 12, 18 | syl5 28 | . . 3 ⊢ (((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) ∧ (x ∈ NC ∧ y ∈ NC )) → ((B = (A +c x) ∧ C = (B +c y)) → A ≤c C)) |
20 | 19 | rexlimdvva 2745 | . 2 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → (∃x ∈ NC ∃y ∈ NC (B = (A +c x) ∧ C = (B +c y)) → A ≤c C)) |
21 | 7, 20 | sylbid 206 | 1 ⊢ ((A ∈ NC ∧ B ∈ NC ∧ C ∈ NC ) → ((A ≤c B ∧ B ≤c C) → A ≤c C)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ∈ wcel 1710 ∃wrex 2615 +c cplc 4375 class class class wbr 4639 NC cncs 6088 ≤c clec 6089 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-1st 4723 df-swap 4724 df-sset 4725 df-co 4726 df-ima 4727 df-si 4728 df-id 4767 df-xp 4784 df-cnv 4785 df-rn 4786 df-dm 4787 df-res 4788 df-fun 4789 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 df-2nd 4797 df-txp 5736 df-ins2 5750 df-ins3 5752 df-image 5754 df-ins4 5756 df-si3 5758 df-funs 5760 df-fns 5762 df-trans 5899 df-sym 5908 df-er 5909 df-ec 5947 df-qs 5951 df-en 6029 df-ncs 6098 df-lec 6099 df-nc 6101 |
This theorem is referenced by: leltctr 6212 lecponc 6213 leconnnc 6218 ncslesuc 6267 nmembers1lem2 6269 nchoicelem4 6292 |
Copyright terms: Public domain | W3C validator |