Step | Hyp | Ref
| Expression |
1 | | elima1c 4948 |
. . . 4
⊢ (〈A, B〉 ∈ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c) ↔ ∃x〈{x}, 〈A, B〉〉 ∈ ( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R))) |
2 | | elsymdif 3224 |
. . . . . 6
⊢ (〈{x}, 〈A, B〉〉 ∈ ( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) ↔ ¬
(〈{x},
〈A,
B〉〉 ∈ Ins2 S ↔ 〈{x}, 〈A, B〉〉 ∈ Ins3 ( S ∘ ◡ SI R))) |
3 | | brimage.1 |
. . . . . . . . 9
⊢ A ∈
V |
4 | 3 | otelins2 5792 |
. . . . . . . 8
⊢ (〈{x}, 〈A, B〉〉 ∈ Ins2 S ↔ 〈{x}, B〉 ∈ S
) |
5 | | vex 2863 |
. . . . . . . . 9
⊢ x ∈
V |
6 | | brimage.2 |
. . . . . . . . 9
⊢ B ∈
V |
7 | 5, 6 | opelssetsn 4761 |
. . . . . . . 8
⊢ (〈{x}, B〉 ∈ S ↔ x ∈ B) |
8 | 4, 7 | bitri 240 |
. . . . . . 7
⊢ (〈{x}, 〈A, B〉〉 ∈ Ins2 S ↔ x ∈ B) |
9 | 6 | otelins3 5793 |
. . . . . . . 8
⊢ (〈{x}, 〈A, B〉〉 ∈ Ins3 ( S ∘ ◡ SI R) ↔ 〈{x}, A〉 ∈ ( S ∘ ◡ SI R)) |
10 | | brcnv 4893 |
. . . . . . . . . . . . . 14
⊢ ({x}◡ SI Rt ↔ t SI R{x}) |
11 | 5 | brsnsi2 5777 |
. . . . . . . . . . . . . 14
⊢ (t SI R{x} ↔
∃y(t = {y} ∧ yRx)) |
12 | 10, 11 | bitri 240 |
. . . . . . . . . . . . 13
⊢ ({x}◡ SI Rt ↔ ∃y(t = {y} ∧ yRx)) |
13 | 12 | anbi1i 676 |
. . . . . . . . . . . 12
⊢ (({x}◡ SI Rt ∧ t S A) ↔ (∃y(t = {y} ∧ yRx) ∧ t S A)) |
14 | | 19.41v 1901 |
. . . . . . . . . . . 12
⊢ (∃y((t = {y} ∧ yRx) ∧ t S A) ↔ (∃y(t = {y} ∧ yRx) ∧ t S A)) |
15 | 13, 14 | bitr4i 243 |
. . . . . . . . . . 11
⊢ (({x}◡ SI Rt ∧ t S A) ↔ ∃y((t = {y} ∧ yRx) ∧ t S A)) |
16 | 15 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃t({x}◡ SI Rt ∧ t S A) ↔ ∃t∃y((t = {y} ∧ yRx) ∧ t S A)) |
17 | | excom 1741 |
. . . . . . . . . 10
⊢ (∃t∃y((t = {y} ∧ yRx) ∧ t S A) ↔ ∃y∃t((t = {y} ∧ yRx) ∧ t S A)) |
18 | | anass 630 |
. . . . . . . . . . . . 13
⊢ (((t = {y} ∧ yRx) ∧ t S A) ↔
(t = {y} ∧ (yRx ∧ t S A))) |
19 | 18 | exbii 1582 |
. . . . . . . . . . . 12
⊢ (∃t((t = {y} ∧ yRx) ∧ t S A) ↔ ∃t(t = {y} ∧ (yRx ∧ t S A))) |
20 | | snex 4112 |
. . . . . . . . . . . . 13
⊢ {y} ∈
V |
21 | | breq1 4643 |
. . . . . . . . . . . . . . 15
⊢ (t = {y} →
(t S A ↔ {y} S A)) |
22 | 21 | anbi2d 684 |
. . . . . . . . . . . . . 14
⊢ (t = {y} →
((yRx ∧ t S A) ↔
(yRx ∧ {y} S A))) |
23 | | ancom 437 |
. . . . . . . . . . . . . . 15
⊢ ((yRx ∧ {y} S A) ↔ ({y} S A ∧ yRx)) |
24 | | vex 2863 |
. . . . . . . . . . . . . . . . 17
⊢ y ∈
V |
25 | 24, 3 | brssetsn 4760 |
. . . . . . . . . . . . . . . 16
⊢ ({y} S A ↔ y ∈ A) |
26 | 25 | anbi1i 676 |
. . . . . . . . . . . . . . 15
⊢ (({y} S A ∧ yRx) ↔ (y
∈ A ∧ yRx)) |
27 | 23, 26 | bitri 240 |
. . . . . . . . . . . . . 14
⊢ ((yRx ∧ {y} S A) ↔ (y
∈ A ∧ yRx)) |
28 | 22, 27 | syl6bb 252 |
. . . . . . . . . . . . 13
⊢ (t = {y} →
((yRx ∧ t S A) ↔
(y ∈
A ∧
yRx))) |
29 | 20, 28 | ceqsexv 2895 |
. . . . . . . . . . . 12
⊢ (∃t(t = {y} ∧ (yRx ∧ t S A)) ↔
(y ∈
A ∧
yRx)) |
30 | 19, 29 | bitri 240 |
. . . . . . . . . . 11
⊢ (∃t((t = {y} ∧ yRx) ∧ t S A) ↔
(y ∈
A ∧
yRx)) |
31 | 30 | exbii 1582 |
. . . . . . . . . 10
⊢ (∃y∃t((t = {y} ∧ yRx) ∧ t S A) ↔ ∃y(y ∈ A ∧ yRx)) |
32 | 16, 17, 31 | 3bitri 262 |
. . . . . . . . 9
⊢ (∃t({x}◡ SI Rt ∧ t S A) ↔ ∃y(y ∈ A ∧ yRx)) |
33 | | opelco 4885 |
. . . . . . . . 9
⊢ (〈{x}, A〉 ∈ ( S ∘ ◡ SI R) ↔ ∃t({x}◡ SI Rt ∧ t S A)) |
34 | | elima2 4756 |
. . . . . . . . 9
⊢ (x ∈ (R “ A)
↔ ∃y(y ∈ A ∧ yRx)) |
35 | 32, 33, 34 | 3bitr4i 268 |
. . . . . . . 8
⊢ (〈{x}, A〉 ∈ ( S ∘ ◡ SI R) ↔
x ∈
(R “ A)) |
36 | 9, 35 | bitri 240 |
. . . . . . 7
⊢ (〈{x}, 〈A, B〉〉 ∈ Ins3 ( S ∘ ◡ SI R) ↔
x ∈
(R “ A)) |
37 | 8, 36 | bibi12i 306 |
. . . . . 6
⊢ ((〈{x}, 〈A, B〉〉 ∈ Ins2 S ↔ 〈{x}, 〈A, B〉〉 ∈ Ins3 ( S ∘ ◡ SI R)) ↔
(x ∈
B ↔ x ∈ (R “ A))) |
38 | 2, 37 | xchbinx 301 |
. . . . 5
⊢ (〈{x}, 〈A, B〉〉 ∈ ( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) ↔ ¬
(x ∈
B ↔ x ∈ (R “ A))) |
39 | 38 | exbii 1582 |
. . . 4
⊢ (∃x〈{x}, 〈A, B〉〉 ∈ ( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) ↔ ∃x ¬
(x ∈
B ↔ x ∈ (R “ A))) |
40 | | exnal 1574 |
. . . 4
⊢ (∃x ¬
(x ∈
B ↔ x ∈ (R “ A))
↔ ¬ ∀x(x ∈ B ↔
x ∈
(R “ A))) |
41 | 1, 39, 40 | 3bitri 262 |
. . 3
⊢ (〈A, B〉 ∈ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c) ↔ ¬ ∀x(x ∈ B ↔ x ∈ (R “
A))) |
42 | 41 | con2bii 322 |
. 2
⊢ (∀x(x ∈ B ↔ x ∈ (R “
A)) ↔ ¬ 〈A, B〉 ∈ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c)) |
43 | | dfcleq 2347 |
. 2
⊢ (B = (R “
A) ↔ ∀x(x ∈ B ↔ x ∈ (R “
A))) |
44 | | df-image 5755 |
. . . 4
⊢ ImageR = ∼ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c) |
45 | 44 | breqi 4646 |
. . 3
⊢ (AImageRB ↔ A ∼
(( Ins2 S ⊕
Ins3 ( S ∘ ◡ SI R)) “
1c)B) |
46 | | df-br 4641 |
. . 3
⊢ (A ∼ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c)B ↔ 〈A, B〉 ∈ ∼ ((
Ins2 S ⊕
Ins3 ( S ∘ ◡ SI R)) “
1c)) |
47 | 3, 6 | opex 4589 |
. . . 4
⊢ 〈A, B〉 ∈ V |
48 | 47 | elcompl 3226 |
. . 3
⊢ (〈A, B〉 ∈ ∼ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c) ↔ ¬ 〈A, B〉 ∈ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c)) |
49 | 45, 46, 48 | 3bitri 262 |
. 2
⊢ (AImageRB ↔ ¬ 〈A, B〉 ∈ (( Ins2 S ⊕ Ins3 ( S ∘ ◡ SI R)) “ 1c)) |
50 | 42, 43, 49 | 3bitr4ri 269 |
1
⊢ (AImageRB ↔ B =
(R “ A)) |