New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > exlimivv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Contributed by NM, 1-Aug-1995.) |
Ref | Expression |
---|---|
exlimivv.1 | ⊢ (φ → ψ) |
Ref | Expression |
---|---|
exlimivv | ⊢ (∃x∃yφ → ψ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exlimivv.1 | . . 3 ⊢ (φ → ψ) | |
2 | 1 | exlimiv 1634 | . 2 ⊢ (∃yφ → ψ) |
3 | 2 | exlimiv 1634 | 1 ⊢ (∃x∃yφ → ψ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 |
This theorem depends on definitions: df-bi 177 df-ex 1542 |
This theorem is referenced by: 2mo 2282 cgsex2g 2892 cgsex4g 2893 elxpk 4197 opkabssvvk 4209 sikss1c1c 4268 ins2kss 4280 ins3kss 4281 cokrelk 4285 pw1equn 4332 pw1eqadj 4333 copsexg 4608 elopab 4697 brsi 4762 optocl 4839 xpnz 5046 dfco2a 5082 dfxp2 5114 1stfo 5506 2ndfo 5507 brswap 5510 oprabid 5551 brtxp 5784 txpcofun 5804 pw1fnf1o 5856 entr 6039 unen 6049 xpen 6056 xpassen 6058 mucnc 6132 muccl 6133 muccom 6135 mucass 6136 ncaddccl 6145 ncdisjeq 6149 tcdi 6165 elce 6176 ce0addcnnul 6180 cenc 6182 sbthlem3 6206 dflec3 6222 nclenc 6223 lenc 6224 tc11 6229 taddc 6230 letc 6232 ce2le 6234 muc0or 6253 frecxp 6315 |
Copyright terms: Public domain | W3C validator |