New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > iotauni | GIF version |
Description: Equivalence between two different forms of ℩. (Contributed by Andrew Salmon, 12-Jul-2011.) |
Ref | Expression |
---|---|
iotauni | ⊢ (∃!xφ → (℩xφ) = ∪{x ∣ φ}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-eu 2208 | . 2 ⊢ (∃!xφ ↔ ∃z∀x(φ ↔ x = z)) | |
2 | iotaval 4350 | . . . 4 ⊢ (∀x(φ ↔ x = z) → (℩xφ) = z) | |
3 | uniabio 4349 | . . . 4 ⊢ (∀x(φ ↔ x = z) → ∪{x ∣ φ} = z) | |
4 | 2, 3 | eqtr4d 2388 | . . 3 ⊢ (∀x(φ ↔ x = z) → (℩xφ) = ∪{x ∣ φ}) |
5 | 4 | exlimiv 1634 | . 2 ⊢ (∃z∀x(φ ↔ x = z) → (℩xφ) = ∪{x ∣ φ}) |
6 | 1, 5 | sylbi 187 | 1 ⊢ (∃!xφ → (℩xφ) = ∪{x ∣ φ}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∀wal 1540 ∃wex 1541 = wceq 1642 ∃!weu 2204 {cab 2339 ∪cuni 3891 ℩cio 4337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-rex 2620 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-un 3214 df-sn 3741 df-pr 3742 df-uni 3892 df-iota 4339 |
This theorem is referenced by: iotaint 4352 iotassuni 4355 dfiota3 4370 dfiota4 4372 |
Copyright terms: Public domain | W3C validator |