![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > dff1o4 | GIF version |
Description: Alternate definition of one-to-one onto function. (The proof was shortened by Andrew Salmon, 22-Oct-2011.) (Contributed by set.mm contributors, 25-Mar-1998.) (Revised by set.mm contributors, 22-Oct-2011.) |
Ref | Expression |
---|---|
dff1o4 | ⊢ (F:A–1-1-onto→B ↔ (F Fn A ∧ ◡F Fn B)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dff1o2 5291 | . 2 ⊢ (F:A–1-1-onto→B ↔ (F Fn A ∧ Fun ◡F ∧ ran F = B)) | |
2 | 3anass 938 | . 2 ⊢ ((F Fn A ∧ Fun ◡F ∧ ran F = B) ↔ (F Fn A ∧ (Fun ◡F ∧ ran F = B))) | |
3 | dfrn4 4904 | . . . . . 6 ⊢ ran F = dom ◡F | |
4 | 3 | eqeq1i 2360 | . . . . 5 ⊢ (ran F = B ↔ dom ◡F = B) |
5 | 4 | anbi2i 675 | . . . 4 ⊢ ((Fun ◡F ∧ ran F = B) ↔ (Fun ◡F ∧ dom ◡F = B)) |
6 | df-fn 4790 | . . . 4 ⊢ (◡F Fn B ↔ (Fun ◡F ∧ dom ◡F = B)) | |
7 | 5, 6 | bitr4i 243 | . . 3 ⊢ ((Fun ◡F ∧ ran F = B) ↔ ◡F Fn B) |
8 | 7 | anbi2i 675 | . 2 ⊢ ((F Fn A ∧ (Fun ◡F ∧ ran F = B)) ↔ (F Fn A ∧ ◡F Fn B)) |
9 | 1, 2, 8 | 3bitri 262 | 1 ⊢ (F:A–1-1-onto→B ↔ (F Fn A ∧ ◡F Fn B)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∧ w3a 934 = wceq 1642 ◡ccnv 4771 dom cdm 4772 ran crn 4773 Fun wfun 4775 Fn wfn 4776 –1-1-onto→wf1o 4780 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-ima 4727 df-cnv 4785 df-rn 4786 df-dm 4787 df-fn 4790 df-f 4791 df-f1 4792 df-fo 4793 df-f1o 4794 |
This theorem is referenced by: f1ocnvb 5298 f1oun 5304 f1o00 5317 f1oi 5320 f1ovi 5321 f1osn 5322 swapf1o 5511 f1od 5726 f1opprod 5844 enex 6031 enpw1 6062 enmap2 6068 scancan 6331 |
Copyright terms: Public domain | W3C validator |