New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > inexg | GIF version |
Description: The intersection of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
inexg | ⊢ ((A ∈ V ∧ B ∈ W) → (A ∩ B) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-in 3214 | . 2 ⊢ (A ∩ B) = ∼ (A ⩃ B) | |
2 | ninexg 4098 | . . 3 ⊢ ((A ∈ V ∧ B ∈ W) → (A ⩃ B) ∈ V) | |
3 | complexg 4100 | . . 3 ⊢ ((A ⩃ B) ∈ V → ∼ (A ⩃ B) ∈ V) | |
4 | 2, 3 | syl 15 | . 2 ⊢ ((A ∈ V ∧ B ∈ W) → ∼ (A ⩃ B) ∈ V) |
5 | 1, 4 | syl5eqel 2437 | 1 ⊢ ((A ∈ V ∧ B ∈ W) → (A ∩ B) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 Vcvv 2860 ⩃ cnin 3205 ∼ ccompl 3206 ∩ cin 3209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 |
This theorem is referenced by: difexg 4103 inex 4106 xpkexg 4289 imakexg 4300 cokexg 4310 peano5 4410 spfininduct 4541 xpexg 5115 resexg 5117 txpexg 5785 fixexg 5789 clos1induct 5881 frds 5936 pmex 6006 nenpw1pwlem1 6085 ovcelem1 6172 fnfreclem1 6318 |
Copyright terms: Public domain | W3C validator |