NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  inexg GIF version

Theorem inexg 4101
Description: The intersection of two sets is a set. (Contributed by SF, 12-Jan-2015.)
Assertion
Ref Expression
inexg ((A V B W) → (AB) V)

Proof of Theorem inexg
StepHypRef Expression
1 df-in 3214 . 2 (AB) = ∼ (AB)
2 ninexg 4098 . . 3 ((A V B W) → (AB) V)
3 complexg 4100 . . 3 ((AB) V → ∼ (AB) V)
42, 3syl 15 . 2 ((A V B W) → ∼ (AB) V)
51, 4syl5eqel 2437 1 ((A V B W) → (AB) V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   wa 358   wcel 1710  Vcvv 2860  cnin 3205  ccompl 3206  cin 3209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214
This theorem is referenced by:  difexg  4103  inex  4106  xpkexg  4289  imakexg  4300  cokexg  4310  peano5  4410  spfininduct  4541  xpexg  5115  resexg  5117  txpexg  5785  fixexg  5789  clos1induct  5881  frds  5936  pmex  6006  nenpw1pwlem1  6085  ovcelem1  6172  fnfreclem1  6318
  Copyright terms: Public domain W3C validator