New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > difex | GIF version |
Description: The difference of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
boolex.1 | ⊢ A ∈ V |
boolex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
difex | ⊢ (A ∖ B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | boolex.1 | . 2 ⊢ A ∈ V | |
2 | boolex.2 | . 2 ⊢ B ∈ V | |
3 | difexg 4103 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ∖ B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ∖ B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ∖ cdif 3207 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-dif 3216 |
This theorem is referenced by: pwadjoin 4120 addcexlem 4383 nncex 4397 nnsucelrlem1 4425 nnsucelr 4429 ltfinex 4465 ssfin 4471 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelkex 4526 sfintfinlem1 4532 tfinnnlem1 4534 sfinltfin 4536 spfinex 4538 vfinspnn 4542 phialllem2 4618 phiall 4619 mpt2exlem 5812 funsex 5829 transex 5911 antisymex 5913 connexex 5914 foundex 5915 extex 5916 symex 5917 enadj 6061 ltcex 6117 2p1e3c 6157 sbthlem1 6204 dflec2 6211 nchoicelem11 6300 nchoicelem16 6305 |
Copyright terms: Public domain | W3C validator |