Step | Hyp | Ref
| Expression |
1 | | ssel 3268 |
. . 3
⊢ (A ⊆
1c → (x ∈ A →
x ∈
1c)) |
2 | | pw1ss1c 4159 |
. . . . 5
⊢ ℘1∪A ⊆
1c |
3 | 2 | sseli 3270 |
. . . 4
⊢ (x ∈ ℘1∪A → x ∈ 1c) |
4 | 3 | a1i 10 |
. . 3
⊢ (A ⊆
1c → (x ∈ ℘1∪A → x ∈ 1c)) |
5 | | el1c 4140 |
. . . 4
⊢ (x ∈
1c ↔ ∃y x = {y}) |
6 | | vex 2863 |
. . . . . . . . . 10
⊢ y ∈
V |
7 | 6 | snid 3761 |
. . . . . . . . 9
⊢ y ∈ {y} |
8 | | eleq2 2414 |
. . . . . . . . . 10
⊢ (x = {y} →
(y ∈
x ↔ y ∈ {y})) |
9 | 8 | rspcev 2956 |
. . . . . . . . 9
⊢ (({y} ∈ A ∧ y ∈ {y}) → ∃x ∈ A y ∈ x) |
10 | 7, 9 | mpan2 652 |
. . . . . . . 8
⊢ ({y} ∈ A → ∃x ∈ A y ∈ x) |
11 | | el1c 4140 |
. . . . . . . . . . 11
⊢ (x ∈
1c ↔ ∃z x = {z}) |
12 | | elsn 3749 |
. . . . . . . . . . . . . . 15
⊢ (y ∈ {z} ↔ y =
z) |
13 | | sneq 3745 |
. . . . . . . . . . . . . . . 16
⊢ (y = z →
{y} = {z}) |
14 | 13 | eleq1d 2419 |
. . . . . . . . . . . . . . 15
⊢ (y = z →
({y} ∈
A ↔ {z} ∈ A)) |
15 | 12, 14 | sylbi 187 |
. . . . . . . . . . . . . 14
⊢ (y ∈ {z} → ({y}
∈ A
↔ {z} ∈ A)) |
16 | 15 | biimprcd 216 |
. . . . . . . . . . . . 13
⊢ ({z} ∈ A → (y
∈ {z}
→ {y} ∈ A)) |
17 | | eleq1 2413 |
. . . . . . . . . . . . . 14
⊢ (x = {z} →
(x ∈
A ↔ {z} ∈ A)) |
18 | | eleq2 2414 |
. . . . . . . . . . . . . . 15
⊢ (x = {z} →
(y ∈
x ↔ y ∈ {z})) |
19 | 18 | imbi1d 308 |
. . . . . . . . . . . . . 14
⊢ (x = {z} →
((y ∈
x → {y} ∈ A) ↔ (y
∈ {z}
→ {y} ∈ A))) |
20 | 17, 19 | imbi12d 311 |
. . . . . . . . . . . . 13
⊢ (x = {z} →
((x ∈
A → (y ∈ x → {y}
∈ A))
↔ ({z} ∈ A →
(y ∈
{z} → {y} ∈ A)))) |
21 | 16, 20 | mpbiri 224 |
. . . . . . . . . . . 12
⊢ (x = {z} →
(x ∈
A → (y ∈ x → {y}
∈ A))) |
22 | 21 | exlimiv 1634 |
. . . . . . . . . . 11
⊢ (∃z x = {z} →
(x ∈
A → (y ∈ x → {y}
∈ A))) |
23 | 11, 22 | sylbi 187 |
. . . . . . . . . 10
⊢ (x ∈
1c → (x ∈ A →
(y ∈
x → {y} ∈ A))) |
24 | 1, 23 | syli 33 |
. . . . . . . . 9
⊢ (A ⊆
1c → (x ∈ A →
(y ∈
x → {y} ∈ A))) |
25 | 24 | rexlimdv 2738 |
. . . . . . . 8
⊢ (A ⊆
1c → (∃x ∈ A y ∈ x →
{y} ∈
A)) |
26 | 10, 25 | impbid2 195 |
. . . . . . 7
⊢ (A ⊆
1c → ({y} ∈ A ↔
∃x ∈ A y ∈ x)) |
27 | | eluni2 3896 |
. . . . . . 7
⊢ (y ∈ ∪A ↔ ∃x ∈ A y ∈ x) |
28 | 26, 27 | syl6bbr 254 |
. . . . . 6
⊢ (A ⊆
1c → ({y} ∈ A ↔
y ∈ ∪A)) |
29 | | eleq1 2413 |
. . . . . . 7
⊢ (x = {y} →
(x ∈
A ↔ {y} ∈ A)) |
30 | | eleq1 2413 |
. . . . . . . 8
⊢ (x = {y} →
(x ∈
℘1∪A ↔ {y} ∈ ℘1∪A)) |
31 | | snelpw1 4147 |
. . . . . . . 8
⊢ ({y} ∈ ℘1∪A ↔ y ∈ ∪A) |
32 | 30, 31 | syl6bb 252 |
. . . . . . 7
⊢ (x = {y} →
(x ∈
℘1∪A ↔ y ∈ ∪A)) |
33 | 29, 32 | bibi12d 312 |
. . . . . 6
⊢ (x = {y} →
((x ∈
A ↔ x ∈ ℘1∪A) ↔ ({y}
∈ A
↔ y ∈ ∪A))) |
34 | 28, 33 | syl5ibrcom 213 |
. . . . 5
⊢ (A ⊆
1c → (x = {y} → (x
∈ A
↔ x ∈ ℘1∪A))) |
35 | 34 | exlimdv 1636 |
. . . 4
⊢ (A ⊆
1c → (∃y x = {y} → (x
∈ A
↔ x ∈ ℘1∪A))) |
36 | 5, 35 | syl5bi 208 |
. . 3
⊢ (A ⊆
1c → (x ∈ 1c → (x ∈ A ↔ x ∈ ℘1∪A))) |
37 | 1, 4, 36 | pm5.21ndd 343 |
. 2
⊢ (A ⊆
1c → (x ∈ A ↔
x ∈ ℘1∪A)) |
38 | 37 | eqrdv 2351 |
1
⊢ (A ⊆
1c → A = ℘1∪A) |