NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  dfuni3 GIF version

Theorem dfuni3 4316
Description: Alternate definition of class union for existence proof. (Contributed by SF, 14-Jan-2015.)
Assertion
Ref Expression
dfuni3 A = ⋃1(k Skk A)

Proof of Theorem dfuni3
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2863 . . . . . 6 y V
2 snex 4112 . . . . . 6 {x} V
31, 2opkelcnvk 4251 . . . . 5 (⟪y, {x}⟫ k Sk ↔ ⟪{x}, y Sk )
4 vex 2863 . . . . . 6 x V
54, 1elssetk 4271 . . . . 5 (⟪{x}, y Skx y)
63, 5bitri 240 . . . 4 (⟪y, {x}⟫ k Skx y)
76rexbii 2640 . . 3 (y Ay, {x}⟫ k Sky A x y)
84eluni1 4174 . . . 4 (x 1(k Skk A) ↔ {x} (k Skk A))
92elimak 4260 . . . 4 ({x} (k Skk A) ↔ y Ay, {x}⟫ k Sk )
108, 9bitri 240 . . 3 (x 1(k Skk A) ↔ y Ay, {x}⟫ k Sk )
11 eluni2 3896 . . 3 (x Ay A x y)
127, 10, 113bitr4ri 269 . 2 (x Ax 1(k Skk A))
1312eqriv 2350 1 A = ⋃1(k Skk A)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  wrex 2616  {csn 3738  cuni 3892  copk 4058  1cuni1 4134  kccnvk 4176  k cimak 4180   Sk cssetk 4184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-sn 3742  df-pr 3743  df-uni 3893  df-opk 4059  df-1c 4137  df-uni1 4139  df-cnvk 4187  df-imak 4190  df-ssetk 4194
This theorem is referenced by:  uniexg  4317
  Copyright terms: Public domain W3C validator