New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > dfuni3 | GIF version |
Description: Alternate definition of class union for existence proof. (Contributed by SF, 14-Jan-2015.) |
Ref | Expression |
---|---|
dfuni3 | ⊢ ∪A = ⋃1(◡k Sk “k A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2863 | . . . . . 6 ⊢ y ∈ V | |
2 | snex 4112 | . . . . . 6 ⊢ {x} ∈ V | |
3 | 1, 2 | opkelcnvk 4251 | . . . . 5 ⊢ (⟪y, {x}⟫ ∈ ◡k Sk ↔ ⟪{x}, y⟫ ∈ Sk ) |
4 | vex 2863 | . . . . . 6 ⊢ x ∈ V | |
5 | 4, 1 | elssetk 4271 | . . . . 5 ⊢ (⟪{x}, y⟫ ∈ Sk ↔ x ∈ y) |
6 | 3, 5 | bitri 240 | . . . 4 ⊢ (⟪y, {x}⟫ ∈ ◡k Sk ↔ x ∈ y) |
7 | 6 | rexbii 2640 | . . 3 ⊢ (∃y ∈ A ⟪y, {x}⟫ ∈ ◡k Sk ↔ ∃y ∈ A x ∈ y) |
8 | 4 | eluni1 4174 | . . . 4 ⊢ (x ∈ ⋃1(◡k Sk “k A) ↔ {x} ∈ (◡k Sk “k A)) |
9 | 2 | elimak 4260 | . . . 4 ⊢ ({x} ∈ (◡k Sk “k A) ↔ ∃y ∈ A ⟪y, {x}⟫ ∈ ◡k Sk ) |
10 | 8, 9 | bitri 240 | . . 3 ⊢ (x ∈ ⋃1(◡k Sk “k A) ↔ ∃y ∈ A ⟪y, {x}⟫ ∈ ◡k Sk ) |
11 | eluni2 3896 | . . 3 ⊢ (x ∈ ∪A ↔ ∃y ∈ A x ∈ y) | |
12 | 7, 10, 11 | 3bitr4ri 269 | . 2 ⊢ (x ∈ ∪A ↔ x ∈ ⋃1(◡k Sk “k A)) |
13 | 12 | eqriv 2350 | 1 ⊢ ∪A = ⋃1(◡k Sk “k A) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1642 ∈ wcel 1710 ∃wrex 2616 {csn 3738 ∪cuni 3892 ⟪copk 4058 ⋃1cuni1 4134 ◡kccnvk 4176 “k cimak 4180 Sk cssetk 4184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-uni 3893 df-opk 4059 df-1c 4137 df-uni1 4139 df-cnvk 4187 df-imak 4190 df-ssetk 4194 |
This theorem is referenced by: uniexg 4317 |
Copyright terms: Public domain | W3C validator |