NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elfin GIF version

Theorem elfin 4421
Description: Membership in the set of finite sets. (Contributed by SF, 19-Jan-2015.)
Assertion
Ref Expression
elfin (A Finx Nn A x)
Distinct variable group:   x,A

Proof of Theorem elfin
StepHypRef Expression
1 df-fin 4381 . . 3 Fin = Nn
21eleq2i 2417 . 2 (A FinA Nn )
3 eluni2 3896 . 2 (A Nnx Nn A x)
42, 3bitri 240 1 (A Finx Nn A x)
Colors of variables: wff setvar class
Syntax hints:  wb 176   wcel 1710  wrex 2616  cuni 3892   Nn cnnc 4374   Fin cfin 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-uni 3893  df-fin 4381
This theorem is referenced by:  0fin  4424  snfi  4432  ssfin  4471  vfinnc  4472  sfinltfin  4536  ncssfin  6152  pw1fin  6170  nntccl  6171  finnc  6244  ncfin  6248
  Copyright terms: Public domain W3C validator