New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elfin | GIF version |
Description: Membership in the set of finite sets. (Contributed by SF, 19-Jan-2015.) |
Ref | Expression |
---|---|
elfin | ⊢ (A ∈ Fin ↔ ∃x ∈ Nn A ∈ x) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fin 4381 | . . 3 ⊢ Fin = ∪ Nn | |
2 | 1 | eleq2i 2417 | . 2 ⊢ (A ∈ Fin ↔ A ∈ ∪ Nn ) |
3 | eluni2 3896 | . 2 ⊢ (A ∈ ∪ Nn ↔ ∃x ∈ Nn A ∈ x) | |
4 | 2, 3 | bitri 240 | 1 ⊢ (A ∈ Fin ↔ ∃x ∈ Nn A ∈ x) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∈ wcel 1710 ∃wrex 2616 ∪cuni 3892 Nn cnnc 4374 Fin cfin 4377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-uni 3893 df-fin 4381 |
This theorem is referenced by: 0fin 4424 snfi 4432 ssfin 4471 vfinnc 4472 sfinltfin 4536 ncssfin 6152 pw1fin 6170 nntccl 6171 finnc 6244 ncfin 6248 |
Copyright terms: Public domain | W3C validator |