NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  cnvuni GIF version

Theorem cnvuni 4896
Description: The converse of a class union is the (indexed) union of the converses of its members. (Contributed by set.mm contributors, 11-Aug-2004.)
Assertion
Ref Expression
cnvuni A = x A x
Distinct variable group:   x,A

Proof of Theorem cnvuni
Dummy variables y z w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elcnv2 4891 . . . 4 (y Azw(y = z, w w, z A))
2 eluni2 3896 . . . . . . 7 (w, z Ax A w, z x)
32anbi2i 675 . . . . . 6 ((y = z, w w, z A) ↔ (y = z, w x A w, z x))
4 r19.42v 2766 . . . . . 6 (x A (y = z, w w, z x) ↔ (y = z, w x A w, z x))
53, 4bitr4i 243 . . . . 5 ((y = z, w w, z A) ↔ x A (y = z, w w, z x))
652exbii 1583 . . . 4 (zw(y = z, w w, z A) ↔ zwx A (y = z, w w, z x))
7 elcnv2 4891 . . . . . 6 (y xzw(y = z, w w, z x))
87rexbii 2640 . . . . 5 (x A y xx A zw(y = z, w w, z x))
9 rexcom4 2879 . . . . 5 (x A zw(y = z, w w, z x) ↔ zx A w(y = z, w w, z x))
10 rexcom4 2879 . . . . . 6 (x A w(y = z, w w, z x) ↔ wx A (y = z, w w, z x))
1110exbii 1582 . . . . 5 (zx A w(y = z, w w, z x) ↔ zwx A (y = z, w w, z x))
128, 9, 113bitrri 263 . . . 4 (zwx A (y = z, w w, z x) ↔ x A y x)
131, 6, 123bitri 262 . . 3 (y Ax A y x)
14 eliun 3974 . . 3 (y x A xx A y x)
1513, 14bitr4i 243 . 2 (y Ay x A x)
1615eqriv 2350 1 A = x A x
Colors of variables: wff setvar class
Syntax hints:   wa 358  wex 1541   = wceq 1642   wcel 1710  wrex 2616  cuni 3892  ciun 3970  cop 4562  ccnv 4772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-iun 3972  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-addc 4379  df-nnc 4380  df-phi 4566  df-op 4567  df-opab 4624  df-br 4641  df-cnv 4786
This theorem is referenced by:  funcnvuni  5162
  Copyright terms: Public domain W3C validator