| New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > NFE Home > Th. List > funeqi | GIF version | ||
| Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| funeqi.1 | ⊢ A = B |
| Ref | Expression |
|---|---|
| funeqi | ⊢ (Fun A ↔ Fun B) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funeqi.1 | . 2 ⊢ A = B | |
| 2 | funeq 5128 | . 2 ⊢ (A = B → (Fun A ↔ Fun B)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Fun A ↔ Fun B) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 176 = wceq 1642 Fun wfun 4776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 df-opab 4624 df-br 4641 df-co 4727 df-cnv 4786 df-fun 4790 |
| This theorem is referenced by: funco 5143 funprg 5150 funprgOLD 5151 funcnvuni 5162 funcnvres2 5168 f1co 5265 fun11iun 5306 f10 5317 funoprabg 5584 ovidig 5594 funmpt 5688 enpw1 6063 sbthlem3 6206 |
| Copyright terms: Public domain | W3C validator |