NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  funeqi GIF version

Theorem funeqi 5129
Description: Equality inference for the function predicate. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypothesis
Ref Expression
funeqi.1 A = B
Assertion
Ref Expression
funeqi (Fun A ↔ Fun B)

Proof of Theorem funeqi
StepHypRef Expression
1 funeqi.1 . 2 A = B
2 funeq 5128 . 2 (A = B → (Fun A ↔ Fun B))
31, 2ax-mp 5 1 (Fun A ↔ Fun B)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642  Fun wfun 4776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-ss 3260  df-opab 4624  df-br 4641  df-co 4727  df-cnv 4786  df-fun 4790
This theorem is referenced by:  funco  5143  funprg  5150  funprgOLD  5151  funcnvuni  5162  funcnvres2  5168  f1co  5265  fun11iun  5306  f10  5317  funoprabg  5584  ovidig  5594  funmpt  5688  enpw1  6063  sbthlem3  6206
  Copyright terms: Public domain W3C validator