![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > inxp | GIF version |
Description: The intersection of two cross products. Exercise 9 of [TakeutiZaring] p. 25. (The proof was shortened by Andrew Salmon, 27-Aug-2011.) (Contributed by NM, 3-Aug-1994.) (Revised by set.mm contributors, 27-Aug-2011.) |
Ref | Expression |
---|---|
inxp | ⊢ ((A × B) ∩ (C × D)) = ((A ∩ C) × (B ∩ D)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inopab 4862 | . . 3 ⊢ ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} ∩ {〈x, y〉 ∣ (x ∈ C ∧ y ∈ D)}) = {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D))} | |
2 | an4 797 | . . . . 5 ⊢ (((x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D)) ↔ ((x ∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D))) | |
3 | elin 3219 | . . . . . 6 ⊢ (x ∈ (A ∩ C) ↔ (x ∈ A ∧ x ∈ C)) | |
4 | elin 3219 | . . . . . 6 ⊢ (y ∈ (B ∩ D) ↔ (y ∈ B ∧ y ∈ D)) | |
5 | 3, 4 | anbi12i 678 | . . . . 5 ⊢ ((x ∈ (A ∩ C) ∧ y ∈ (B ∩ D)) ↔ ((x ∈ A ∧ x ∈ C) ∧ (y ∈ B ∧ y ∈ D))) |
6 | 2, 5 | bitr4i 243 | . . . 4 ⊢ (((x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D)) ↔ (x ∈ (A ∩ C) ∧ y ∈ (B ∩ D))) |
7 | 6 | opabbii 4626 | . . 3 ⊢ {〈x, y〉 ∣ ((x ∈ A ∧ y ∈ B) ∧ (x ∈ C ∧ y ∈ D))} = {〈x, y〉 ∣ (x ∈ (A ∩ C) ∧ y ∈ (B ∩ D))} |
8 | 1, 7 | eqtri 2373 | . 2 ⊢ ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} ∩ {〈x, y〉 ∣ (x ∈ C ∧ y ∈ D)}) = {〈x, y〉 ∣ (x ∈ (A ∩ C) ∧ y ∈ (B ∩ D))} |
9 | df-xp 4784 | . . 3 ⊢ (A × B) = {〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} | |
10 | df-xp 4784 | . . 3 ⊢ (C × D) = {〈x, y〉 ∣ (x ∈ C ∧ y ∈ D)} | |
11 | 9, 10 | ineq12i 3455 | . 2 ⊢ ((A × B) ∩ (C × D)) = ({〈x, y〉 ∣ (x ∈ A ∧ y ∈ B)} ∩ {〈x, y〉 ∣ (x ∈ C ∧ y ∈ D)}) |
12 | df-xp 4784 | . 2 ⊢ ((A ∩ C) × (B ∩ D)) = {〈x, y〉 ∣ (x ∈ (A ∩ C) ∧ y ∈ (B ∩ D))} | |
13 | 8, 11, 12 | 3eqtr4i 2383 | 1 ⊢ ((A × B) ∩ (C × D)) = ((A ∩ C) × (B ∩ D)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∩ cin 3208 {copab 4622 × cxp 4770 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-xp 4079 ax-cnv 4080 ax-1c 4081 ax-sset 4082 ax-si 4083 ax-ins2 4084 ax-ins3 4085 ax-typlower 4086 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-ral 2619 df-rex 2620 df-reu 2621 df-rmo 2622 df-rab 2623 df-v 2861 df-sbc 3047 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-symdif 3216 df-ss 3259 df-pss 3261 df-nul 3551 df-if 3663 df-pw 3724 df-sn 3741 df-pr 3742 df-uni 3892 df-int 3927 df-opk 4058 df-1c 4136 df-pw1 4137 df-uni1 4138 df-xpk 4185 df-cnvk 4186 df-ins2k 4187 df-ins3k 4188 df-imak 4189 df-cok 4190 df-p6 4191 df-sik 4192 df-ssetk 4193 df-imagek 4194 df-idk 4195 df-iota 4339 df-0c 4377 df-addc 4378 df-nnc 4379 df-fin 4380 df-lefin 4440 df-ltfin 4441 df-ncfin 4442 df-tfin 4443 df-evenfin 4444 df-oddfin 4445 df-sfin 4446 df-spfin 4447 df-phi 4565 df-op 4566 df-proj1 4567 df-proj2 4568 df-opab 4623 df-br 4640 df-xp 4784 |
This theorem is referenced by: xpindi 4864 xpindir 4865 dmxpin 4925 xpdisj1 5047 xpdisj2 5048 |
Copyright terms: Public domain | W3C validator |