New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > nchoicelem7 | GIF version |
Description: Lemma for nchoice 6309. Calculate the cardinality of a special set generator. Theorem 6.7 of [Specker] p. 974. (Contributed by SF, 13-Mar-2015.) |
Ref | Expression |
---|---|
nchoicelem7 | ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → Nc ( Spac ‘M) = ( Nc ( Spac ‘(2c ↑c M)) +c 1c)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nchoicelem6 6295 | . . 3 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → ( Spac ‘M) = ({M} ∪ ( Spac ‘(2c ↑c M)))) | |
2 | 1 | nceqd 6111 | . 2 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → Nc ( Spac ‘M) = Nc ({M} ∪ ( Spac ‘(2c ↑c M)))) |
3 | incom 3449 | . . . . . 6 ⊢ ({M} ∩ ( Spac ‘(2c ↑c M))) = (( Spac ‘(2c ↑c M)) ∩ {M}) | |
4 | nchoicelem5 6294 | . . . . . . 7 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → ¬ M ∈ ( Spac ‘(2c ↑c M))) | |
5 | disjsn 3787 | . . . . . . 7 ⊢ ((( Spac ‘(2c ↑c M)) ∩ {M}) = ∅ ↔ ¬ M ∈ ( Spac ‘(2c ↑c M))) | |
6 | 4, 5 | sylibr 203 | . . . . . 6 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → (( Spac ‘(2c ↑c M)) ∩ {M}) = ∅) |
7 | 3, 6 | syl5eq 2397 | . . . . 5 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → ({M} ∩ ( Spac ‘(2c ↑c M))) = ∅) |
8 | snex 4112 | . . . . . 6 ⊢ {M} ∈ V | |
9 | fvex 5340 | . . . . . 6 ⊢ ( Spac ‘(2c ↑c M)) ∈ V | |
10 | 8, 9 | ncdisjun 6137 | . . . . 5 ⊢ (({M} ∩ ( Spac ‘(2c ↑c M))) = ∅ → Nc ({M} ∪ ( Spac ‘(2c ↑c M))) = ( Nc {M} +c Nc ( Spac ‘(2c ↑c M)))) |
11 | 7, 10 | syl 15 | . . . 4 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → Nc ({M} ∪ ( Spac ‘(2c ↑c M))) = ( Nc {M} +c Nc ( Spac ‘(2c ↑c M)))) |
12 | df1c3g 6142 | . . . . . 6 ⊢ (M ∈ NC → 1c = Nc {M}) | |
13 | 12 | addceq1d 4390 | . . . . 5 ⊢ (M ∈ NC → (1c +c Nc ( Spac ‘(2c ↑c M))) = ( Nc {M} +c Nc ( Spac ‘(2c ↑c M)))) |
14 | 13 | adantr 451 | . . . 4 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → (1c +c Nc ( Spac ‘(2c ↑c M))) = ( Nc {M} +c Nc ( Spac ‘(2c ↑c M)))) |
15 | 11, 14 | eqtr4d 2388 | . . 3 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → Nc ({M} ∪ ( Spac ‘(2c ↑c M))) = (1c +c Nc ( Spac ‘(2c ↑c M)))) |
16 | addccom 4407 | . . 3 ⊢ (1c +c Nc ( Spac ‘(2c ↑c M))) = ( Nc ( Spac ‘(2c ↑c M)) +c 1c) | |
17 | 15, 16 | syl6eq 2401 | . 2 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → Nc ({M} ∪ ( Spac ‘(2c ↑c M))) = ( Nc ( Spac ‘(2c ↑c M)) +c 1c)) |
18 | 2, 17 | eqtrd 2385 | 1 ⊢ ((M ∈ NC ∧ (M ↑c 0c) ∈ NC ) → Nc ( Spac ‘M) = ( Nc ( Spac ‘(2c ↑c M)) +c 1c)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 358 = wceq 1642 ∈ wcel 1710 ∪ cun 3208 ∩ cin 3209 ∅c0 3551 {csn 3738 1cc1c 4135 0cc0c 4375 +c cplc 4376 ‘cfv 4782 (class class class)co 5526 NC cncs 6089 Nc cnc 6092 2cc2c 6095 ↑c cce 6097 Spac cspac 6274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-1st 4724 df-swap 4725 df-sset 4726 df-co 4727 df-ima 4728 df-si 4729 df-id 4768 df-xp 4785 df-cnv 4786 df-rn 4787 df-dm 4788 df-res 4789 df-fun 4790 df-fn 4791 df-f 4792 df-f1 4793 df-fo 4794 df-f1o 4795 df-fv 4796 df-2nd 4798 df-ov 5527 df-oprab 5529 df-mpt 5653 df-mpt2 5655 df-txp 5737 df-fix 5741 df-compose 5749 df-ins2 5751 df-ins3 5753 df-image 5755 df-ins4 5757 df-si3 5759 df-funs 5761 df-fns 5763 df-pw1fn 5767 df-fullfun 5769 df-clos1 5874 df-trans 5900 df-sym 5909 df-er 5910 df-ec 5948 df-qs 5952 df-map 6002 df-en 6030 df-ncs 6099 df-lec 6100 df-ltc 6101 df-nc 6102 df-2c 6105 df-ce 6107 df-spac 6275 |
This theorem is referenced by: nchoicelem9 6298 nchoicelem12 6301 nchoicelem17 6306 |
Copyright terms: Public domain | W3C validator |