New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > df1c2 | GIF version |
Description: Cardinal one is the unit power class of the universe. (Contributed by SF, 29-Jan-2015.) |
Ref | Expression |
---|---|
df1c2 | ⊢ 1c = ℘1V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexv 2873 | . . 3 ⊢ (∃y ∈ V x = {y} ↔ ∃y x = {y}) | |
2 | elpw1 4144 | . . 3 ⊢ (x ∈ ℘1V ↔ ∃y ∈ V x = {y}) | |
3 | el1c 4139 | . . 3 ⊢ (x ∈ 1c ↔ ∃y x = {y}) | |
4 | 1, 2, 3 | 3bitr4ri 269 | . 2 ⊢ (x ∈ 1c ↔ x ∈ ℘1V) |
5 | 4 | eqriv 2350 | 1 ⊢ 1c = ℘1V |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2615 Vcvv 2859 {csn 3737 1cc1c 4134 ℘1cpw1 4135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4078 ax-sn 4087 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2478 df-ne 2518 df-rex 2620 df-v 2861 df-nin 3211 df-compl 3212 df-in 3213 df-un 3214 df-dif 3215 df-ss 3259 df-nul 3551 df-pw 3724 df-sn 3741 df-1c 4136 df-pw1 4137 |
This theorem is referenced by: 1cvsfin 4542 tncveqnc1fin 4544 vfinspsslem1 4550 elima1c 4947 pw1fnf1o 5855 ncpw1c 6154 ce2nc1 6193 tcncv 6226 nchoicelem19 6307 |
Copyright terms: Public domain | W3C validator |