NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  df1c2 GIF version

Theorem df1c2 4169
Description: Cardinal one is the unit power class of the universe. (Contributed by SF, 29-Jan-2015.)
Assertion
Ref Expression
df1c2 1c = 1V

Proof of Theorem df1c2
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rexv 2874 . . 3 (y V x = {y} ↔ y x = {y})
2 elpw1 4145 . . 3 (x 1V ↔ y V x = {y})
3 el1c 4140 . . 3 (x 1cy x = {y})
41, 2, 33bitr4ri 269 . 2 (x 1cx 1V)
54eqriv 2350 1 1c = 1V
Colors of variables: wff setvar class
Syntax hints:  wex 1541   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  {csn 3738  1cc1c 4135  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-1c 4137  df-pw1 4138
This theorem is referenced by:  1cvsfin  4543  tncveqnc1fin  4545  vfinspsslem1  4551  elima1c  4948  pw1fnf1o  5856  ncpw1c  6155  ce2nc1  6194  tcncv  6227  nchoicelem19  6308
  Copyright terms: Public domain W3C validator