New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elxpk2 | GIF version |
Description: Membership in a cross product. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
elxpk2 | ⊢ (A ∈ (B ×k C) ↔ ∃x ∈ B ∃y ∈ C A = ⟪x, y⟫) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 437 | . . 3 ⊢ (((x ∈ B ∧ y ∈ C) ∧ A = ⟪x, y⟫) ↔ (A = ⟪x, y⟫ ∧ (x ∈ B ∧ y ∈ C))) | |
2 | 1 | 2exbii 1583 | . 2 ⊢ (∃x∃y((x ∈ B ∧ y ∈ C) ∧ A = ⟪x, y⟫) ↔ ∃x∃y(A = ⟪x, y⟫ ∧ (x ∈ B ∧ y ∈ C))) |
3 | r2ex 2653 | . 2 ⊢ (∃x ∈ B ∃y ∈ C A = ⟪x, y⟫ ↔ ∃x∃y((x ∈ B ∧ y ∈ C) ∧ A = ⟪x, y⟫)) | |
4 | elxpk 4197 | . 2 ⊢ (A ∈ (B ×k C) ↔ ∃x∃y(A = ⟪x, y⟫ ∧ (x ∈ B ∧ y ∈ C))) | |
5 | 2, 3, 4 | 3bitr4ri 269 | 1 ⊢ (A ∈ (B ×k C) ↔ ∃x ∈ B ∃y ∈ C A = ⟪x, y⟫) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 ⟪copk 4058 ×k cxpk 4175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-ss 3260 df-nul 3552 df-sn 3742 df-pr 3743 df-opk 4059 df-xpk 4186 |
This theorem is referenced by: xpkeq1 4199 xpkeq2 4200 |
Copyright terms: Public domain | W3C validator |