New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimdvva | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 18-Jun-2014.) |
Ref | Expression |
---|---|
rexlimdvva.1 | ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ → χ)) |
Ref | Expression |
---|---|
rexlimdvva | ⊢ (φ → (∃x ∈ A ∃y ∈ B ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimdvva.1 | . . 3 ⊢ ((φ ∧ (x ∈ A ∧ y ∈ B)) → (ψ → χ)) | |
2 | 1 | ex 423 | . 2 ⊢ (φ → ((x ∈ A ∧ y ∈ B) → (ψ → χ))) |
3 | 2 | rexlimdvv 2745 | 1 ⊢ (φ → (∃x ∈ A ∃y ∈ B ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 358 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: nnsucelr 4429 nndisjeq 4430 prepeano4 4452 ltfintr 4460 ncfinlower 4484 tfindi 4497 tfinsuc 4499 nnadjoin 4521 nnpweq 4524 sfindbl 4531 tfinnn 4535 vfinspsslem1 4551 ncdisjun 6137 peano4nc 6151 ncspw1eu 6160 ce0addcnnul 6180 sbth 6207 dflec2 6211 lectr 6212 |
Copyright terms: Public domain | W3C validator |