New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > rexlimdv | GIF version |
Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by NM, 14-Nov-2002.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
rexlimdv.1 | ⊢ (φ → (x ∈ A → (ψ → χ))) |
Ref | Expression |
---|---|
rexlimdv | ⊢ (φ → (∃x ∈ A ψ → χ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1619 | . 2 ⊢ Ⅎxφ | |
2 | nfv 1619 | . 2 ⊢ Ⅎxχ | |
3 | rexlimdv.1 | . 2 ⊢ (φ → (x ∈ A → (ψ → χ))) | |
4 | 1, 2, 3 | rexlimd 2736 | 1 ⊢ (φ → (∃x ∈ A ψ → χ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ∃wrex 2616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-11 1746 |
This theorem depends on definitions: df-bi 177 df-an 360 df-ex 1542 df-nf 1545 df-ral 2620 df-rex 2621 |
This theorem is referenced by: rexlimdva 2739 rexlimdv3a 2741 rexlimdvw 2742 rexlimdvv 2745 eqpw1uni 4331 nndisjeq 4430 ssfin 4471 nnpw1ex 4485 tfinltfinlem1 4501 sfin112 4530 sfintfin 4533 sfinltfin 4536 funcnvuni 5162 dffo3 5423 nclenn 6250 ncslesuc 6268 |
Copyright terms: Public domain | W3C validator |