New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > lec0cg | GIF version |
Description: Cardinal zero is a minimal element of cardinal less than or equal. Theorem XI.2.15 of [Rosser] p. 376. (Contributed by SF, 4-Mar-2015.) |
Ref | Expression |
---|---|
lec0cg | ⊢ ((A ∈ V ∧ A ≠ ∅) → 0c ≤c A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 3580 | . . . . . . 7 ⊢ ∅ ⊆ y | |
2 | 1 | jctr 526 | . . . . . 6 ⊢ (y ∈ A → (y ∈ A ∧ ∅ ⊆ y)) |
3 | 2 | eximi 1576 | . . . . 5 ⊢ (∃y y ∈ A → ∃y(y ∈ A ∧ ∅ ⊆ y)) |
4 | n0 3560 | . . . . 5 ⊢ (A ≠ ∅ ↔ ∃y y ∈ A) | |
5 | df-rex 2621 | . . . . 5 ⊢ (∃y ∈ A ∅ ⊆ y ↔ ∃y(y ∈ A ∧ ∅ ⊆ y)) | |
6 | 3, 4, 5 | 3imtr4i 257 | . . . 4 ⊢ (A ≠ ∅ → ∃y ∈ A ∅ ⊆ y) |
7 | df-0c 4378 | . . . . . 6 ⊢ 0c = {∅} | |
8 | rexeq 2809 | . . . . . 6 ⊢ (0c = {∅} → (∃x ∈ 0c ∃y ∈ A x ⊆ y ↔ ∃x ∈ {∅}∃y ∈ A x ⊆ y)) | |
9 | 7, 8 | ax-mp 5 | . . . . 5 ⊢ (∃x ∈ 0c ∃y ∈ A x ⊆ y ↔ ∃x ∈ {∅}∃y ∈ A x ⊆ y) |
10 | 0ex 4111 | . . . . . 6 ⊢ ∅ ∈ V | |
11 | sseq1 3293 | . . . . . . 7 ⊢ (x = ∅ → (x ⊆ y ↔ ∅ ⊆ y)) | |
12 | 11 | rexbidv 2636 | . . . . . 6 ⊢ (x = ∅ → (∃y ∈ A x ⊆ y ↔ ∃y ∈ A ∅ ⊆ y)) |
13 | 10, 12 | rexsn 3769 | . . . . 5 ⊢ (∃x ∈ {∅}∃y ∈ A x ⊆ y ↔ ∃y ∈ A ∅ ⊆ y) |
14 | 9, 13 | bitri 240 | . . . 4 ⊢ (∃x ∈ 0c ∃y ∈ A x ⊆ y ↔ ∃y ∈ A ∅ ⊆ y) |
15 | 6, 14 | sylibr 203 | . . 3 ⊢ (A ≠ ∅ → ∃x ∈ 0c ∃y ∈ A x ⊆ y) |
16 | 15 | adantl 452 | . 2 ⊢ ((A ∈ V ∧ A ≠ ∅) → ∃x ∈ 0c ∃y ∈ A x ⊆ y) |
17 | 0cex 4393 | . . . 4 ⊢ 0c ∈ V | |
18 | brlecg 6113 | . . . 4 ⊢ ((0c ∈ V ∧ A ∈ V) → (0c ≤c A ↔ ∃x ∈ 0c ∃y ∈ A x ⊆ y)) | |
19 | 17, 18 | mpan 651 | . . 3 ⊢ (A ∈ V → (0c ≤c A ↔ ∃x ∈ 0c ∃y ∈ A x ⊆ y)) |
20 | 19 | adantr 451 | . 2 ⊢ ((A ∈ V ∧ A ≠ ∅) → (0c ≤c A ↔ ∃x ∈ 0c ∃y ∈ A x ⊆ y)) |
21 | 16, 20 | mpbird 223 | 1 ⊢ ((A ∈ V ∧ A ≠ ∅) → 0c ≤c A) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∧ wa 358 ∃wex 1541 = wceq 1642 ∈ wcel 1710 ≠ wne 2517 ∃wrex 2616 Vcvv 2860 ⊆ wss 3258 ∅c0 3551 {csn 3738 0cc0c 4375 class class class wbr 4640 ≤c clec 6090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-13 1712 ax-14 1714 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 ax-xp 4080 ax-cnv 4081 ax-1c 4082 ax-sset 4083 ax-si 4084 ax-ins2 4085 ax-ins3 4086 ax-typlower 4087 ax-sn 4088 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3or 935 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-eu 2208 df-mo 2209 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-ne 2519 df-ral 2620 df-rex 2621 df-reu 2622 df-rmo 2623 df-rab 2624 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 df-ss 3260 df-pss 3262 df-nul 3552 df-if 3664 df-pw 3725 df-sn 3742 df-pr 3743 df-uni 3893 df-int 3928 df-opk 4059 df-1c 4137 df-pw1 4138 df-uni1 4139 df-xpk 4186 df-cnvk 4187 df-ins2k 4188 df-ins3k 4189 df-imak 4190 df-cok 4191 df-p6 4192 df-sik 4193 df-ssetk 4194 df-imagek 4195 df-idk 4196 df-iota 4340 df-0c 4378 df-addc 4379 df-nnc 4380 df-fin 4381 df-lefin 4441 df-ltfin 4442 df-ncfin 4443 df-tfin 4444 df-evenfin 4445 df-oddfin 4446 df-sfin 4447 df-spfin 4448 df-phi 4566 df-op 4567 df-proj1 4568 df-proj2 4569 df-opab 4624 df-br 4641 df-lec 6100 |
This theorem is referenced by: le0nc 6201 |
Copyright terms: Public domain | W3C validator |