NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  pw1sn GIF version

Theorem pw1sn 4166
Description: Compute the unit power class of a singleton. (Contributed by SF, 22-Jan-2015.)
Hypothesis
Ref Expression
pw1sn.1 A V
Assertion
Ref Expression
pw1sn 1{A} = {{A}}

Proof of Theorem pw1sn
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pw1sn.1 . . . 4 A V
2 sneq 3745 . . . . 5 (y = A → {y} = {A})
32eqeq2d 2364 . . . 4 (y = A → (x = {y} ↔ x = {A}))
41, 3rexsn 3769 . . 3 (y {A}x = {y} ↔ x = {A})
5 elpw1 4145 . . 3 (x 1{A} ↔ y {A}x = {y})
6 elsn 3749 . . 3 (x {{A}} ↔ x = {A})
74, 5, 63bitr4i 268 . 2 (x 1{A} ↔ x {{A}})
87eqriv 2350 1 1{A} = {{A}}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  {csn 3738  1cpw1 4136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-ss 3260  df-nul 3552  df-pw 3725  df-sn 3742  df-1c 4137  df-pw1 4138
This theorem is referenced by:  pw1eqadj  4333  ncfinraise  4482  tfinsuc  4499  sfindbl  4531  tc1c  6166  ce0nn  6181  ce2  6193
  Copyright terms: Public domain W3C validator