New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > elimaksn | GIF version |
Description: Membership in a Kuratowski image of a singleton. (Contributed by SF, 4-Feb-2015.) |
Ref | Expression |
---|---|
elimaksn.1 | ⊢ B ∈ V |
elimaksn.2 | ⊢ C ∈ V |
Ref | Expression |
---|---|
elimaksn | ⊢ (C ∈ (A “k {B}) ↔ ⟪B, C⟫ ∈ A) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimaksn.2 | . . 3 ⊢ C ∈ V | |
2 | 1 | elimak 4260 | . 2 ⊢ (C ∈ (A “k {B}) ↔ ∃x ∈ {B}⟪x, C⟫ ∈ A) |
3 | elimaksn.1 | . . 3 ⊢ B ∈ V | |
4 | opkeq1 4060 | . . . 4 ⊢ (x = B → ⟪x, C⟫ = ⟪B, C⟫) | |
5 | 4 | eleq1d 2419 | . . 3 ⊢ (x = B → (⟪x, C⟫ ∈ A ↔ ⟪B, C⟫ ∈ A)) |
6 | 3, 5 | rexsn 3769 | . 2 ⊢ (∃x ∈ {B}⟪x, C⟫ ∈ A ↔ ⟪B, C⟫ ∈ A) |
7 | 2, 6 | bitri 240 | 1 ⊢ (C ∈ (A “k {B}) ↔ ⟪B, C⟫ ∈ A) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 176 = wceq 1642 ∈ wcel 1710 ∃wrex 2616 Vcvv 2860 {csn 3738 ⟪copk 4058 “k cimak 4180 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-3an 936 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-sbc 3048 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-opk 4059 df-imak 4190 |
This theorem is referenced by: preaddccan2lem1 4455 |
Copyright terms: Public domain | W3C validator |