NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  elimaksn GIF version

Theorem elimaksn 4284
Description: Membership in a Kuratowski image of a singleton. (Contributed by SF, 4-Feb-2015.)
Hypotheses
Ref Expression
elimaksn.1 B V
elimaksn.2 C V
Assertion
Ref Expression
elimaksn (C (Ak {B}) ↔ ⟪B, C A)

Proof of Theorem elimaksn
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 elimaksn.2 . . 3 C V
21elimak 4260 . 2 (C (Ak {B}) ↔ x {B}⟪x, C A)
3 elimaksn.1 . . 3 B V
4 opkeq1 4060 . . . 4 (x = B → ⟪x, C⟫ = ⟪B, C⟫)
54eleq1d 2419 . . 3 (x = B → (⟪x, C A ↔ ⟪B, C A))
63, 5rexsn 3769 . 2 (x {B}⟪x, C A ↔ ⟪B, C A)
72, 6bitri 240 1 (C (Ak {B}) ↔ ⟪B, C A)
Colors of variables: wff setvar class
Syntax hints:  wb 176   = wceq 1642   wcel 1710  wrex 2616  Vcvv 2860  {csn 3738  copk 4058  k cimak 4180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-opk 4059  df-imak 4190
This theorem is referenced by:  preaddccan2lem1  4455
  Copyright terms: Public domain W3C validator