Step | Hyp | Ref
| Expression |
1 | | oveq2 5532 |
. 2
⊢ (M = Nc ℘1A → (2c
↑c M) =
(2c ↑c Nc
℘1A)) |
2 | | df-pr 3743 |
. . . . . . . . . 10
⊢ {V, ∅} = ({V} ∪ {∅}) |
3 | | pw1eq 4144 |
. . . . . . . . . 10
⊢ ({V, ∅} = ({V} ∪ {∅}) → ℘1{V, ∅} = ℘1({V} ∪ {∅})) |
4 | 2, 3 | ax-mp 5 |
. . . . . . . . 9
⊢ ℘1{V, ∅} = ℘1({V} ∪ {∅}) |
5 | | pw1un 4164 |
. . . . . . . . 9
⊢ ℘1({V} ∪ {∅}) = (℘1{V} ∪ ℘1{∅}) |
6 | 4, 5 | eqtri 2373 |
. . . . . . . 8
⊢ ℘1{V, ∅} = (℘1{V} ∪ ℘1{∅}) |
7 | | df-pr 3743 |
. . . . . . . . 9
⊢ {{V}, {∅}} = ({{V}} ∪ {{∅}}) |
8 | | vvex 4110 |
. . . . . . . . . . 11
⊢ V ∈ V |
9 | 8 | pw1sn 4166 |
. . . . . . . . . 10
⊢ ℘1{V} = {{V}} |
10 | | 0ex 4111 |
. . . . . . . . . . 11
⊢ ∅ ∈
V |
11 | 10 | pw1sn 4166 |
. . . . . . . . . 10
⊢ ℘1{∅} = {{∅}} |
12 | 9, 11 | uneq12i 3417 |
. . . . . . . . 9
⊢ (℘1{V} ∪ ℘1{∅}) = ({{V}} ∪ {{∅}}) |
13 | 7, 12 | eqtr4i 2376 |
. . . . . . . 8
⊢ {{V}, {∅}} = (℘1{V} ∪ ℘1{∅}) |
14 | 6, 13 | eqtr4i 2376 |
. . . . . . 7
⊢ ℘1{V, ∅} = {{V}, {∅}} |
15 | | vn0 3558 |
. . . . . . . . . 10
⊢ V ≠ ∅ |
16 | 8 | sneqb 3877 |
. . . . . . . . . . 11
⊢ ({V} = {∅} ↔ V = ∅) |
17 | 16 | necon3bii 2549 |
. . . . . . . . . 10
⊢ ({V} ≠ {∅} ↔ V ≠ ∅) |
18 | 15, 17 | mpbir 200 |
. . . . . . . . 9
⊢ {V} ≠ {∅} |
19 | | eqid 2353 |
. . . . . . . . 9
⊢ {{V}, {∅}} = {{V}, {∅}} |
20 | | snex 4112 |
. . . . . . . . . 10
⊢ {V} ∈ V |
21 | | snex 4112 |
. . . . . . . . . 10
⊢ {∅} ∈
V |
22 | | neeq1 2525 |
. . . . . . . . . . . 12
⊢ (x = {V} → (x ≠ y ↔
{V} ≠ y)) |
23 | | neeq2 2526 |
. . . . . . . . . . . 12
⊢ (y = {∅} →
({V} ≠ y ↔ {V} ≠ {∅})) |
24 | 22, 23 | sylan9bb 680 |
. . . . . . . . . . 11
⊢ ((x = {V} ∧ y = {∅}) →
(x ≠ y ↔ {V} ≠ {∅})) |
25 | | preq12 3802 |
. . . . . . . . . . . 12
⊢ ((x = {V} ∧ y = {∅}) →
{x, y}
= {{V}, {∅}}) |
26 | 25 | eqeq2d 2364 |
. . . . . . . . . . 11
⊢ ((x = {V} ∧ y = {∅}) →
({{V}, {∅}} = {x, y} ↔
{{V}, {∅}} = {{V}, {∅}})) |
27 | 24, 26 | anbi12d 691 |
. . . . . . . . . 10
⊢ ((x = {V} ∧ y = {∅}) →
((x ≠ y ∧ {{V}, {∅}} = {x,
y}) ↔ ({V} ≠ {∅} ∧ {{V}, {∅}} = {{V}, {∅}}))) |
28 | 20, 21, 27 | spc2ev 2948 |
. . . . . . . . 9
⊢ (({V} ≠ {∅} ∧ {{V}, {∅}} = {{V}, {∅}}) → ∃x∃y(x ≠ y ∧ {{V}, {∅}} =
{x, y})) |
29 | 18, 19, 28 | mp2an 653 |
. . . . . . . 8
⊢ ∃x∃y(x ≠ y ∧ {{V}, {∅}} =
{x, y}) |
30 | | el2c 6192 |
. . . . . . . 8
⊢ ({{V}, {∅}} ∈
2c ↔ ∃x∃y(x ≠
y ∧ {{V},
{∅}} = {x, y})) |
31 | 29, 30 | mpbir 200 |
. . . . . . 7
⊢ {{V}, {∅}} ∈
2c |
32 | 14, 31 | eqeltri 2423 |
. . . . . 6
⊢ ℘1{V, ∅} ∈
2c |
33 | | 2nc 6169 |
. . . . . . 7
⊢
2c ∈ NC |
34 | | ncseqnc 6129 |
. . . . . . 7
⊢
(2c ∈ NC → (2c = Nc ℘1{V,
∅} ↔ ℘1{V, ∅} ∈
2c)) |
35 | 33, 34 | ax-mp 5 |
. . . . . 6
⊢
(2c = Nc ℘1{V, ∅} ↔ ℘1{V, ∅} ∈
2c) |
36 | 32, 35 | mpbir 200 |
. . . . 5
⊢
2c = Nc ℘1{V, ∅} |
37 | 36 | oveq1i 5534 |
. . . 4
⊢
(2c ↑c Nc ℘1A) = ( Nc ℘1{V, ∅} ↑c Nc ℘1A) |
38 | | prex 4113 |
. . . . 5
⊢ {V, ∅} ∈
V |
39 | | ce2.1 |
. . . . 5
⊢ A ∈
V |
40 | 38, 39 | cenc 6182 |
. . . 4
⊢ ( Nc ℘1{V,
∅} ↑c Nc ℘1A) = Nc ({V, ∅} ↑m A) |
41 | 37, 40 | eqtri 2373 |
. . 3
⊢
(2c ↑c Nc ℘1A) = Nc ({V, ∅} ↑m A) |
42 | | eqid 2353 |
. . . . 5
⊢ {V, ∅} = {V, ∅} |
43 | 8, 10, 39 | enprmapc 6084 |
. . . . 5
⊢ ((V ≠ ∅ ∧ {V, ∅} = {V, ∅})
→ ({V, ∅} ↑m
A) ≈ ℘A) |
44 | 15, 42, 43 | mp2an 653 |
. . . 4
⊢ ({V, ∅} ↑m A) ≈ ℘A |
45 | | ovex 5552 |
. . . . 5
⊢ ({V, ∅} ↑m A) ∈
V |
46 | 45 | eqnc 6128 |
. . . 4
⊢ ( Nc ({V, ∅}
↑m A) = Nc ℘A ↔ ({V, ∅}
↑m A) ≈ ℘A) |
47 | 44, 46 | mpbir 200 |
. . 3
⊢ Nc ({V, ∅}
↑m A) = Nc ℘A |
48 | 41, 47 | eqtri 2373 |
. 2
⊢
(2c ↑c Nc ℘1A) = Nc ℘A |
49 | 1, 48 | syl6eq 2401 |
1
⊢ (M = Nc ℘1A → (2c
↑c M) = Nc ℘A) |