| Step | Hyp | Ref
 | Expression | 
| 1 |   | oveq2 5532 | 
. 2
⊢ (M = Nc ℘1A → (2c
↑c M) =
(2c ↑c Nc
℘1A)) | 
| 2 |   | df-pr 3743 | 
. . . . . . . . . 10
⊢ {V, ∅} = ({V} ∪ {∅}) | 
| 3 |   | pw1eq 4144 | 
. . . . . . . . . 10
⊢ ({V, ∅} = ({V} ∪ {∅}) → ℘1{V, ∅} = ℘1({V} ∪ {∅})) | 
| 4 | 2, 3 | ax-mp 5 | 
. . . . . . . . 9
⊢ ℘1{V, ∅} = ℘1({V} ∪ {∅}) | 
| 5 |   | pw1un 4164 | 
. . . . . . . . 9
⊢ ℘1({V} ∪ {∅}) = (℘1{V} ∪ ℘1{∅}) | 
| 6 | 4, 5 | eqtri 2373 | 
. . . . . . . 8
⊢ ℘1{V, ∅} = (℘1{V} ∪ ℘1{∅}) | 
| 7 |   | df-pr 3743 | 
. . . . . . . . 9
⊢ {{V}, {∅}} = ({{V}} ∪ {{∅}}) | 
| 8 |   | vvex 4110 | 
. . . . . . . . . . 11
⊢ V ∈ V | 
| 9 | 8 | pw1sn 4166 | 
. . . . . . . . . 10
⊢ ℘1{V} = {{V}} | 
| 10 |   | 0ex 4111 | 
. . . . . . . . . . 11
⊢ ∅ ∈
V | 
| 11 | 10 | pw1sn 4166 | 
. . . . . . . . . 10
⊢ ℘1{∅} = {{∅}} | 
| 12 | 9, 11 | uneq12i 3417 | 
. . . . . . . . 9
⊢ (℘1{V} ∪ ℘1{∅}) = ({{V}} ∪ {{∅}}) | 
| 13 | 7, 12 | eqtr4i 2376 | 
. . . . . . . 8
⊢ {{V}, {∅}} = (℘1{V} ∪ ℘1{∅}) | 
| 14 | 6, 13 | eqtr4i 2376 | 
. . . . . . 7
⊢ ℘1{V, ∅} = {{V}, {∅}} | 
| 15 |   | vn0 3558 | 
. . . . . . . . . 10
⊢ V ≠ ∅ | 
| 16 | 8 | sneqb 3877 | 
. . . . . . . . . . 11
⊢ ({V} = {∅} ↔ V = ∅) | 
| 17 | 16 | necon3bii 2549 | 
. . . . . . . . . 10
⊢ ({V} ≠ {∅} ↔ V ≠ ∅) | 
| 18 | 15, 17 | mpbir 200 | 
. . . . . . . . 9
⊢ {V} ≠ {∅} | 
| 19 |   | eqid 2353 | 
. . . . . . . . 9
⊢ {{V}, {∅}} = {{V}, {∅}} | 
| 20 |   | snex 4112 | 
. . . . . . . . . 10
⊢ {V} ∈ V | 
| 21 |   | snex 4112 | 
. . . . . . . . . 10
⊢ {∅} ∈
V | 
| 22 |   | neeq1 2525 | 
. . . . . . . . . . . 12
⊢ (x = {V} → (x ≠ y ↔
{V} ≠ y)) | 
| 23 |   | neeq2 2526 | 
. . . . . . . . . . . 12
⊢ (y = {∅} →
({V} ≠ y ↔ {V} ≠ {∅})) | 
| 24 | 22, 23 | sylan9bb 680 | 
. . . . . . . . . . 11
⊢ ((x = {V} ∧ y = {∅}) →
(x ≠ y ↔ {V} ≠ {∅})) | 
| 25 |   | preq12 3802 | 
. . . . . . . . . . . 12
⊢ ((x = {V} ∧ y = {∅}) →
{x, y}
= {{V}, {∅}}) | 
| 26 | 25 | eqeq2d 2364 | 
. . . . . . . . . . 11
⊢ ((x = {V} ∧ y = {∅}) →
({{V}, {∅}} = {x, y} ↔
{{V}, {∅}} = {{V}, {∅}})) | 
| 27 | 24, 26 | anbi12d 691 | 
. . . . . . . . . 10
⊢ ((x = {V} ∧ y = {∅}) →
((x ≠ y ∧ {{V}, {∅}} = {x,
y}) ↔ ({V} ≠ {∅} ∧ {{V}, {∅}} = {{V}, {∅}}))) | 
| 28 | 20, 21, 27 | spc2ev 2948 | 
. . . . . . . . 9
⊢ (({V} ≠ {∅} ∧ {{V}, {∅}} = {{V}, {∅}}) → ∃x∃y(x ≠ y ∧ {{V}, {∅}} =
{x, y})) | 
| 29 | 18, 19, 28 | mp2an 653 | 
. . . . . . . 8
⊢ ∃x∃y(x ≠ y ∧ {{V}, {∅}} =
{x, y}) | 
| 30 |   | el2c 6192 | 
. . . . . . . 8
⊢ ({{V}, {∅}} ∈
2c ↔ ∃x∃y(x ≠
y ∧ {{V},
{∅}} = {x, y})) | 
| 31 | 29, 30 | mpbir 200 | 
. . . . . . 7
⊢ {{V}, {∅}} ∈
2c | 
| 32 | 14, 31 | eqeltri 2423 | 
. . . . . 6
⊢ ℘1{V, ∅} ∈
2c | 
| 33 |   | 2nc 6169 | 
. . . . . . 7
⊢
2c ∈ NC | 
| 34 |   | ncseqnc 6129 | 
. . . . . . 7
⊢
(2c ∈ NC → (2c = Nc ℘1{V,
∅} ↔ ℘1{V, ∅} ∈
2c)) | 
| 35 | 33, 34 | ax-mp 5 | 
. . . . . 6
⊢
(2c = Nc ℘1{V, ∅} ↔ ℘1{V, ∅} ∈
2c) | 
| 36 | 32, 35 | mpbir 200 | 
. . . . 5
⊢
2c = Nc ℘1{V, ∅} | 
| 37 | 36 | oveq1i 5534 | 
. . . 4
⊢
(2c ↑c Nc ℘1A) = ( Nc ℘1{V, ∅} ↑c Nc ℘1A) | 
| 38 |   | prex 4113 | 
. . . . 5
⊢ {V, ∅} ∈
V | 
| 39 |   | ce2.1 | 
. . . . 5
⊢ A ∈
V | 
| 40 | 38, 39 | cenc 6182 | 
. . . 4
⊢ ( Nc ℘1{V,
∅} ↑c Nc ℘1A) = Nc ({V, ∅} ↑m A) | 
| 41 | 37, 40 | eqtri 2373 | 
. . 3
⊢
(2c ↑c Nc ℘1A) = Nc ({V, ∅} ↑m A) | 
| 42 |   | eqid 2353 | 
. . . . 5
⊢ {V, ∅} = {V, ∅} | 
| 43 | 8, 10, 39 | enprmapc 6084 | 
. . . . 5
⊢ ((V ≠ ∅ ∧ {V, ∅} = {V, ∅})
→ ({V, ∅} ↑m
A) ≈ ℘A) | 
| 44 | 15, 42, 43 | mp2an 653 | 
. . . 4
⊢ ({V, ∅} ↑m A) ≈ ℘A | 
| 45 |   | ovex 5552 | 
. . . . 5
⊢ ({V, ∅} ↑m A) ∈
V | 
| 46 | 45 | eqnc 6128 | 
. . . 4
⊢ ( Nc ({V, ∅}
↑m A) = Nc ℘A ↔ ({V, ∅}
↑m A) ≈ ℘A) | 
| 47 | 44, 46 | mpbir 200 | 
. . 3
⊢  Nc ({V, ∅}
↑m A) = Nc ℘A | 
| 48 | 41, 47 | eqtri 2373 | 
. 2
⊢
(2c ↑c Nc ℘1A) = Nc ℘A | 
| 49 | 1, 48 | syl6eq 2401 | 
1
⊢ (M = Nc ℘1A → (2c
↑c M) = Nc ℘A) |