NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  ce2 GIF version

Theorem ce2 6193
Description: The value of base two cardinal exponentiation. Theorem XI.2.70 of [Rosser] p. 389. (Contributed by SF, 3-Mar-2015.)
Hypothesis
Ref Expression
ce2.1 A V
Assertion
Ref Expression
ce2 (M = Nc 1A → (2cc M) = Nc A)

Proof of Theorem ce2
Dummy variables x y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5532 . 2 (M = Nc 1A → (2cc M) = (2cc Nc 1A))
2 df-pr 3743 . . . . . . . . . 10 {V, } = ({V} ∪ {})
3 pw1eq 4144 . . . . . . . . . 10 ({V, } = ({V} ∪ {}) → 1{V, } = 1({V} ∪ {}))
42, 3ax-mp 5 . . . . . . . . 9 1{V, } = 1({V} ∪ {})
5 pw1un 4164 . . . . . . . . 9 1({V} ∪ {}) = (1{V} ∪ 1{})
64, 5eqtri 2373 . . . . . . . 8 1{V, } = (1{V} ∪ 1{})
7 df-pr 3743 . . . . . . . . 9 {{V}, {}} = ({{V}} ∪ {{}})
8 vvex 4110 . . . . . . . . . . 11 V V
98pw1sn 4166 . . . . . . . . . 10 1{V} = {{V}}
10 0ex 4111 . . . . . . . . . . 11 V
1110pw1sn 4166 . . . . . . . . . 10 1{} = {{}}
129, 11uneq12i 3417 . . . . . . . . 9 (1{V} ∪ 1{}) = ({{V}} ∪ {{}})
137, 12eqtr4i 2376 . . . . . . . 8 {{V}, {}} = (1{V} ∪ 1{})
146, 13eqtr4i 2376 . . . . . . 7 1{V, } = {{V}, {}}
15 vn0 3558 . . . . . . . . . 10 V ≠
168sneqb 3877 . . . . . . . . . . 11 ({V} = {} ↔ V = )
1716necon3bii 2549 . . . . . . . . . 10 ({V} ≠ {} ↔ V ≠ )
1815, 17mpbir 200 . . . . . . . . 9 {V} ≠ {}
19 eqid 2353 . . . . . . . . 9 {{V}, {}} = {{V}, {}}
20 snex 4112 . . . . . . . . . 10 {V} V
21 snex 4112 . . . . . . . . . 10 {} V
22 neeq1 2525 . . . . . . . . . . . 12 (x = {V} → (xy ↔ {V} ≠ y))
23 neeq2 2526 . . . . . . . . . . . 12 (y = {} → ({V} ≠ y ↔ {V} ≠ {}))
2422, 23sylan9bb 680 . . . . . . . . . . 11 ((x = {V} y = {}) → (xy ↔ {V} ≠ {}))
25 preq12 3802 . . . . . . . . . . . 12 ((x = {V} y = {}) → {x, y} = {{V}, {}})
2625eqeq2d 2364 . . . . . . . . . . 11 ((x = {V} y = {}) → ({{V}, {}} = {x, y} ↔ {{V}, {}} = {{V}, {}}))
2724, 26anbi12d 691 . . . . . . . . . 10 ((x = {V} y = {}) → ((xy {{V}, {}} = {x, y}) ↔ ({V} ≠ {} {{V}, {}} = {{V}, {}})))
2820, 21, 27spc2ev 2948 . . . . . . . . 9 (({V} ≠ {} {{V}, {}} = {{V}, {}}) → xy(xy {{V}, {}} = {x, y}))
2918, 19, 28mp2an 653 . . . . . . . 8 xy(xy {{V}, {}} = {x, y})
30 el2c 6192 . . . . . . . 8 ({{V}, {}} 2cxy(xy {{V}, {}} = {x, y}))
3129, 30mpbir 200 . . . . . . 7 {{V}, {}} 2c
3214, 31eqeltri 2423 . . . . . 6 1{V, } 2c
33 2nc 6169 . . . . . . 7 2c NC
34 ncseqnc 6129 . . . . . . 7 (2c NC → (2c = Nc 1{V, } ↔ 1{V, } 2c))
3533, 34ax-mp 5 . . . . . 6 (2c = Nc 1{V, } ↔ 1{V, } 2c)
3632, 35mpbir 200 . . . . 5 2c = Nc 1{V, }
3736oveq1i 5534 . . . 4 (2cc Nc 1A) = ( Nc 1{V, } ↑c Nc 1A)
38 prex 4113 . . . . 5 {V, } V
39 ce2.1 . . . . 5 A V
4038, 39cenc 6182 . . . 4 ( Nc 1{V, } ↑c Nc 1A) = Nc ({V, } ↑m A)
4137, 40eqtri 2373 . . 3 (2cc Nc 1A) = Nc ({V, } ↑m A)
42 eqid 2353 . . . . 5 {V, } = {V, }
438, 10, 39enprmapc 6084 . . . . 5 ((V ≠ {V, } = {V, }) → ({V, } ↑m A) ≈ A)
4415, 42, 43mp2an 653 . . . 4 ({V, } ↑m A) ≈ A
45 ovex 5552 . . . . 5 ({V, } ↑m A) V
4645eqnc 6128 . . . 4 ( Nc ({V, } ↑m A) = Nc A ↔ ({V, } ↑m A) ≈ A)
4744, 46mpbir 200 . . 3 Nc ({V, } ↑m A) = Nc A
4841, 47eqtri 2373 . 2 (2cc Nc 1A) = Nc A
491, 48syl6eq 2401 1 (M = Nc 1A → (2cc M) = Nc A)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176   wa 358  wex 1541   = wceq 1642   wcel 1710  wne 2517  Vcvv 2860  cun 3208  c0 3551  cpw 3723  {csn 3738  {cpr 3739  1cpw1 4136   class class class wbr 4640  (class class class)co 5526  m cmap 6000  cen 6029   NC cncs 6089   Nc cnc 6092  2cc2c 6095  c cce 6097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079  ax-xp 4080  ax-cnv 4081  ax-1c 4082  ax-sset 4083  ax-si 4084  ax-ins2 4085  ax-ins3 4086  ax-typlower 4087  ax-sn 4088
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2208  df-mo 2209  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-ne 2519  df-ral 2620  df-rex 2621  df-reu 2622  df-rmo 2623  df-rab 2624  df-v 2862  df-sbc 3048  df-nin 3212  df-compl 3213  df-in 3214  df-un 3215  df-dif 3216  df-symdif 3217  df-ss 3260  df-pss 3262  df-nul 3552  df-if 3664  df-pw 3725  df-sn 3742  df-pr 3743  df-uni 3893  df-int 3928  df-opk 4059  df-1c 4137  df-pw1 4138  df-uni1 4139  df-xpk 4186  df-cnvk 4187  df-ins2k 4188  df-ins3k 4189  df-imak 4190  df-cok 4191  df-p6 4192  df-sik 4193  df-ssetk 4194  df-imagek 4195  df-idk 4196  df-iota 4340  df-0c 4378  df-addc 4379  df-nnc 4380  df-fin 4381  df-lefin 4441  df-ltfin 4442  df-ncfin 4443  df-tfin 4444  df-evenfin 4445  df-oddfin 4446  df-sfin 4447  df-spfin 4448  df-phi 4566  df-op 4567  df-proj1 4568  df-proj2 4569  df-opab 4624  df-br 4641  df-1st 4724  df-swap 4725  df-sset 4726  df-co 4727  df-ima 4728  df-si 4729  df-id 4768  df-xp 4785  df-cnv 4786  df-rn 4787  df-dm 4788  df-res 4789  df-fun 4790  df-fn 4791  df-f 4792  df-f1 4793  df-fo 4794  df-f1o 4795  df-fv 4796  df-2nd 4798  df-ov 5527  df-oprab 5529  df-mpt 5653  df-mpt2 5655  df-txp 5737  df-compose 5749  df-ins2 5751  df-ins3 5753  df-image 5755  df-ins4 5757  df-si3 5759  df-funs 5761  df-fns 5763  df-pw1fn 5767  df-trans 5900  df-sym 5909  df-er 5910  df-ec 5948  df-qs 5952  df-map 6002  df-en 6030  df-ncs 6099  df-nc 6102  df-2c 6105  df-ce 6107
This theorem is referenced by:  ce2nc1  6194  ce2ncpw11c  6195  ce2lt  6221  ce2le  6234  tce2  6237
  Copyright terms: Public domain W3C validator