New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > spcev | GIF version |
Description: Existential specialization, using implicit substitution. (Contributed by NM, 31-Dec-1993.) (Proof shortened by Eric Schmidt, 22-Dec-2006.) |
Ref | Expression |
---|---|
spcv.1 | ⊢ A ∈ V |
spcv.2 | ⊢ (x = A → (φ ↔ ψ)) |
Ref | Expression |
---|---|
spcev | ⊢ (ψ → ∃xφ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | spcv.1 | . 2 ⊢ A ∈ V | |
2 | spcv.2 | . . 3 ⊢ (x = A → (φ ↔ ψ)) | |
3 | 2 | spcegv 2941 | . 2 ⊢ (A ∈ V → (ψ → ∃xφ)) |
4 | 1, 3 | ax-mp 5 | 1 ⊢ (ψ → ∃xφ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 ∃wex 1541 = wceq 1642 ∈ wcel 1710 Vcvv 2860 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 |
This theorem is referenced by: snel1c 4141 sspw1 4336 sspw12 4337 sfin01 4529 sfindbl 4531 1cvsfin 4543 vfinspsslem1 4551 phialllem1 4617 phialllem2 4618 nfunv 5139 ffoss 5315 map0 6026 unen 6049 enpw1 6063 1cnc 6140 ncaddccl 6145 ce0addcnnul 6180 ce0nulnc 6185 dflec3 6222 nclenc 6223 |
Copyright terms: Public domain | W3C validator |