New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > sseli | GIF version |
Description: Membership inference from subclass relationship. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
sseli.1 | ⊢ A ⊆ B |
Ref | Expression |
---|---|
sseli | ⊢ (C ∈ A → C ∈ B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseli.1 | . 2 ⊢ A ⊆ B | |
2 | ssel 3268 | . 2 ⊢ (A ⊆ B → (C ∈ A → C ∈ B)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (C ∈ A → C ∈ B) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1710 ⊆ wss 3258 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-ss 3260 |
This theorem is referenced by: sselii 3271 sseldi 3272 elun1 3431 elun2 3432 opkelimagekg 4272 cokrelk 4285 eqpw1uni 4331 dfnnc2 4396 peano5 4410 nnsucelr 4429 vfinspss 4552 phi011lem1 4599 phialllem2 4618 2elresin 5195 fvopab4ndm 5391 fvimacnvi 5403 elpreima 5408 fvmptss 5706 fvmptex 5722 fvmptnf 5724 clos1is 5882 clos1basesuc 5883 erdisj 5973 enadjlem1 6060 |
Copyright terms: Public domain | W3C validator |