New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > syl5ibr | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (φ → θ) |
syl5ibr.2 | ⊢ (χ → (ψ ↔ θ)) |
Ref | Expression |
---|---|
syl5ibr | ⊢ (χ → (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 ⊢ (φ → θ) | |
2 | syl5ibr.2 | . . 3 ⊢ (χ → (ψ ↔ θ)) | |
3 | 2 | bicomd 192 | . 2 ⊢ (χ → (θ ↔ ψ)) |
4 | 1, 3 | syl5ib 210 | 1 ⊢ (χ → (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: syl5ibrcom 213 biimprd 214 dvelimv 1939 pm2.61ne 2592 unineq 3506 sspw1 4336 vfinncvntnn 4549 ffvresb 5432 peano4nc 6151 ce0addcnnul 6180 ce0nn 6181 ceclb 6184 dflec2 6211 ce0lenc1 6240 addcdi 6251 nchoicelem17 6306 frecxp 6315 |
Copyright terms: Public domain | W3C validator |