NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  syl5ibr GIF version

Theorem syl5ibr 212
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.)
Hypotheses
Ref Expression
syl5ibr.1 (φθ)
syl5ibr.2 (χ → (ψθ))
Assertion
Ref Expression
syl5ibr (χ → (φψ))

Proof of Theorem syl5ibr
StepHypRef Expression
1 syl5ibr.1 . 2 (φθ)
2 syl5ibr.2 . . 3 (χ → (ψθ))
32bicomd 192 . 2 (χ → (θψ))
41, 3syl5ib 210 1 (χ → (φψ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 177
This theorem is referenced by:  syl5ibrcom  213  biimprd  214  dvelimv  1939  pm2.61ne  2592  unineq  3506  sspw1  4336  vfinncvntnn  4549  ffvresb  5432  peano4nc  6151  ce0addcnnul  6180  ce0nn  6181  ceclb  6184  dflec2  6211  ce0lenc1  6240  addcdi  6251  nchoicelem17  6306  frecxp  6315
  Copyright terms: Public domain W3C validator