![]() |
New Foundations Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > NFE Home > Th. List > syl5ibr | GIF version |
Description: A mixed syllogism inference. (Contributed by NM, 3-Apr-1994.) |
Ref | Expression |
---|---|
syl5ibr.1 | ⊢ (φ → θ) |
syl5ibr.2 | ⊢ (χ → (ψ ↔ θ)) |
Ref | Expression |
---|---|
syl5ibr | ⊢ (χ → (φ → ψ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl5ibr.1 | . 2 ⊢ (φ → θ) | |
2 | syl5ibr.2 | . . 3 ⊢ (χ → (ψ ↔ θ)) | |
3 | 2 | bicomd 192 | . 2 ⊢ (χ → (θ ↔ ψ)) |
4 | 1, 3 | syl5ib 210 | 1 ⊢ (χ → (φ → ψ)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 176 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 |
This theorem depends on definitions: df-bi 177 |
This theorem is referenced by: syl5ibrcom 213 biimprd 214 dvelimv 1939 pm2.61ne 2591 unineq 3505 sspw1 4335 vfinncvntnn 4548 ffvresb 5431 peano4nc 6150 ce0addcnnul 6179 ce0nn 6180 ceclb 6183 dflec2 6210 ce0lenc1 6239 addcdi 6250 nchoicelem17 6305 frecxp 6314 |
Copyright terms: Public domain | W3C validator |