NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  complex GIF version

Theorem complex 4105
Description: The complement of a set is a set. (Contributed by SF, 12-Jan-2015.)
Hypothesis
Ref Expression
boolex.1 A V
Assertion
Ref Expression
complex A V

Proof of Theorem complex
StepHypRef Expression
1 boolex.1 . 2 A V
2 complexg 4100 . 2 (A V → ∼ A V)
31, 2ax-mp 5 1 A V
Colors of variables: wff setvar class
Syntax hints:   wcel 1710  Vcvv 2860  ccompl 3206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334  ax-nin 4079
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-v 2862  df-nin 3212  df-compl 3213
This theorem is referenced by:  vvex  4110  0ex  4111  imakexg  4300  intexg  4320  addcexlem  4383  nnsucelrlem1  4425  nndisjeq  4430  preaddccan2lem1  4455  ltfinex  4465  ssfin  4471  ncfinraiselem2  4481  ncfinlowerlem1  4483  tfinrelkex  4488  evenfinex  4504  oddfinex  4505  evenodddisjlem1  4516  nnadjoinlem1  4520  nnpweqlem1  4523  srelkex  4526  sfintfinlem1  4532  tfinnnlem1  4534  spfinex  4538  vfintle  4547  vfin1cltv  4548  nulnnn  4557  phiexg  4572  opexg  4588  proj1exg  4592  proj2exg  4593  setconslem5  4736  1stex  4740  swapex  4743  nfunv  5139  mptexlem  5811  disjex  5824  funsex  5829  fullfunexg  5860  transex  5911  refex  5912  antisymex  5913  connexex  5914  foundex  5915  extex  5916  symex  5917  endisj  6052  enprmaplem4  6080  nenpw1pwlem1  6085  ncaddccl  6145  tcdi  6165  ovcelem1  6172  ceex  6175  ce0nn  6181  tcfnex  6245  nclennlem1  6249  nmembers1lem1  6269  nnc3n3p1  6279  nchoicelem11  6300  nchoicelem16  6305  nchoicelem18  6307
  Copyright terms: Public domain W3C validator