New Foundations Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > NFE Home > Th. List > symdifex | GIF version |
Description: The symmetric difference of two sets is a set. (Contributed by SF, 12-Jan-2015.) |
Ref | Expression |
---|---|
boolex.1 | ⊢ A ∈ V |
boolex.2 | ⊢ B ∈ V |
Ref | Expression |
---|---|
symdifex | ⊢ (A ⊕ B) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | boolex.1 | . 2 ⊢ A ∈ V | |
2 | boolex.2 | . 2 ⊢ B ∈ V | |
3 | symdifexg 4104 | . 2 ⊢ ((A ∈ V ∧ B ∈ V) → (A ⊕ B) ∈ V) | |
4 | 1, 2, 3 | mp2an 653 | 1 ⊢ (A ⊕ B) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 1710 Vcvv 2860 ⊕ csymdif 3210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 ax-nin 4079 |
This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-v 2862 df-nin 3212 df-compl 3213 df-in 3214 df-un 3215 df-dif 3216 df-symdif 3217 |
This theorem is referenced by: addcexlem 4383 nnsucelrlem1 4425 ltfinex 4465 ncfinraiselem2 4481 ncfinlowerlem1 4483 tfinrelkex 4488 evenfinex 4504 oddfinex 4505 evenodddisjlem1 4516 nnadjoinlem1 4520 nnpweqlem1 4523 srelkex 4526 tfinnnlem1 4534 opexg 4588 proj2exg 4593 setconslem5 4736 1stex 4740 swapex 4743 mptexlem 5811 mpt2exlem 5812 extex 5916 ovcelem1 6172 ceex 6175 tcfnex 6245 nmembers1lem1 6269 nchoicelem11 6300 nchoicelem16 6305 nchoicelem18 6307 |
Copyright terms: Public domain | W3C validator |