NFE Home New Foundations Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  NFE Home  >  Th. List  >  unisng GIF version

Theorem unisng 3909
Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unisng (A V{A} = A)

Proof of Theorem unisng
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 sneq 3745 . . . 4 (x = A → {x} = {A})
21unieqd 3903 . . 3 (x = A{x} = {A})
3 id 19 . . 3 (x = Ax = A)
42, 3eqeq12d 2367 . 2 (x = A → ({x} = x{A} = A))
5 vex 2863 . . 3 x V
65unisn 3908 . 2 {x} = x
74, 6vtoclg 2915 1 (A V{A} = A)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1642   wcel 1710  {csn 3738  cuni 3892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1925  ax-ext 2334
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-nan 1288  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-clab 2340  df-cleq 2346  df-clel 2349  df-nfc 2479  df-rex 2621  df-v 2862  df-nin 3212  df-compl 3213  df-un 3215  df-sn 3742  df-pr 3743  df-uni 3893
This theorem is referenced by:  dfnfc2  3910  dfiota4  4373
  Copyright terms: Public domain W3C validator