| New Foundations Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > NFE Home > Th. List > unisng | GIF version | ||
| Description: A set equals the union of its singleton. Theorem 8.2 of [Quine] p. 53. (Contributed by NM, 13-Aug-2002.) | 
| Ref | Expression | 
|---|---|
| unisng | ⊢ (A ∈ V → ∪{A} = A) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sneq 3745 | . . . 4 ⊢ (x = A → {x} = {A}) | |
| 2 | 1 | unieqd 3903 | . . 3 ⊢ (x = A → ∪{x} = ∪{A}) | 
| 3 | id 19 | . . 3 ⊢ (x = A → x = A) | |
| 4 | 2, 3 | eqeq12d 2367 | . 2 ⊢ (x = A → (∪{x} = x ↔ ∪{A} = A)) | 
| 5 | vex 2863 | . . 3 ⊢ x ∈ V | |
| 6 | 5 | unisn 3908 | . 2 ⊢ ∪{x} = x | 
| 7 | 4, 6 | vtoclg 2915 | 1 ⊢ (A ∈ V → ∪{A} = A) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1642 ∈ wcel 1710 {csn 3738 ∪cuni 3892 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1546 ax-5 1557 ax-17 1616 ax-9 1654 ax-8 1675 ax-6 1729 ax-7 1734 ax-11 1746 ax-12 1925 ax-ext 2334 | 
| This theorem depends on definitions: df-bi 177 df-or 359 df-an 360 df-nan 1288 df-tru 1319 df-ex 1542 df-nf 1545 df-sb 1649 df-clab 2340 df-cleq 2346 df-clel 2349 df-nfc 2479 df-rex 2621 df-v 2862 df-nin 3212 df-compl 3213 df-un 3215 df-sn 3742 df-pr 3743 df-uni 3893 | 
| This theorem is referenced by: dfnfc2 3910 dfiota4 4373 | 
| Copyright terms: Public domain | W3C validator |