Proof of Theorem ud5lem1a
Step | Hyp | Ref
| Expression |
1 | | df-i5 48 |
. . 3
(a →5 b) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
2 | | df-i5 48 |
. . 3
(b →5 a) = (((b ∩
a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ )) |
3 | 1, 2 | 2an 79 |
. 2
((a →5 b) ∩ (b
→5 a)) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ ))) |
4 | | ax-a2 31 |
. . . 4
(((b ∩ a) ∪ (b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ )) = ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a))) |
5 | 4 | lan 77 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ ))) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a)))) |
6 | | coman2 186 |
. . . . . . . . . 10
(a ∩ b) C b |
7 | 6 | comcom2 183 |
. . . . . . . . 9
(a ∩ b) C b⊥ |
8 | | coman1 185 |
. . . . . . . . . 10
(a ∩ b) C a |
9 | 8 | comcom2 183 |
. . . . . . . . 9
(a ∩ b) C a⊥ |
10 | 7, 9 | com2an 484 |
. . . . . . . 8
(a ∩ b) C (b⊥ ∩ a⊥ ) |
11 | 10 | comcom 453 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C (a ∩ b) |
12 | | coman2 186 |
. . . . . . . . . 10
(a⊥ ∩ b) C b |
13 | 12 | comcom2 183 |
. . . . . . . . 9
(a⊥ ∩ b) C b⊥ |
14 | | coman1 185 |
. . . . . . . . 9
(a⊥ ∩ b) C a⊥ |
15 | 13, 14 | com2an 484 |
. . . . . . . 8
(a⊥ ∩ b) C (b⊥ ∩ a⊥ ) |
16 | 15 | comcom 453 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C (a⊥ ∩ b) |
17 | 11, 16 | com2or 483 |
. . . . . 6
(b⊥ ∩ a⊥ ) C ((a ∩ b) ∪
(a⊥ ∩ b)) |
18 | | coman2 186 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C a⊥ |
19 | | coman1 185 |
. . . . . . 7
(b⊥ ∩ a⊥ ) C b⊥ |
20 | 18, 19 | com2an 484 |
. . . . . 6
(b⊥ ∩ a⊥ ) C (a⊥ ∩ b⊥ ) |
21 | 17, 20 | com2or 483 |
. . . . 5
(b⊥ ∩ a⊥ ) C (((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
22 | | coman1 185 |
. . . . . . . . 9
(b ∩ a) C b |
23 | 22 | comcom2 183 |
. . . . . . . 8
(b ∩ a) C b⊥ |
24 | | coman2 186 |
. . . . . . . . 9
(b ∩ a) C a |
25 | 24 | comcom2 183 |
. . . . . . . 8
(b ∩ a) C a⊥ |
26 | 23, 25 | com2an 484 |
. . . . . . 7
(b ∩ a) C (b⊥ ∩ a⊥ ) |
27 | 26 | comcom 453 |
. . . . . 6
(b⊥ ∩ a⊥ ) C (b ∩ a) |
28 | | coman1 185 |
. . . . . . . 8
(b⊥ ∩ a) C b⊥ |
29 | | coman2 186 |
. . . . . . . . 9
(b⊥ ∩ a) C a |
30 | 29 | comcom2 183 |
. . . . . . . 8
(b⊥ ∩ a) C a⊥ |
31 | 28, 30 | com2an 484 |
. . . . . . 7
(b⊥ ∩ a) C (b⊥ ∩ a⊥ ) |
32 | 31 | comcom 453 |
. . . . . 6
(b⊥ ∩ a⊥ ) C (b⊥ ∩ a) |
33 | 27, 32 | com2or 483 |
. . . . 5
(b⊥ ∩ a⊥ ) C ((b ∩ a) ∪
(b⊥ ∩ a)) |
34 | 21, 33 | fh2 470 |
. . . 4
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a)))) = (((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a⊥ )) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b ∩ a) ∪
(b⊥ ∩ a)))) |
35 | 18 | comcom3 454 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ )⊥ C
a⊥ |
36 | 35 | comcom5 458 |
. . . . . . . . . 10
(b⊥ ∩ a⊥ ) C a |
37 | 19 | comcom3 454 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ )⊥ C
b⊥ |
38 | 37 | comcom5 458 |
. . . . . . . . . 10
(b⊥ ∩ a⊥ ) C b |
39 | 36, 38 | com2an 484 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) C (a ∩ b) |
40 | 18, 38 | com2an 484 |
. . . . . . . . 9
(b⊥ ∩ a⊥ ) C (a⊥ ∩ b) |
41 | 39, 40 | com2or 483 |
. . . . . . . 8
(b⊥ ∩ a⊥ ) C ((a ∩ b) ∪
(a⊥ ∩ b)) |
42 | 41, 20 | fh1r 473 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a⊥ )) = ((((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a⊥ ))) |
43 | 11, 16 | fh1r 473 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a⊥ )) = (((a ∩ b) ∩
(b⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (b⊥ ∩ a⊥ ))) |
44 | | anass 76 |
. . . . . . . . . . . . 13
((a ∩ b) ∩ (b⊥ ∩ a⊥ )) = (a ∩ (b ∩
(b⊥ ∩ a⊥ ))) |
45 | | anass 76 |
. . . . . . . . . . . . . . . 16
((b ∩ b⊥ ) ∩ a⊥ ) = (b ∩ (b⊥ ∩ a⊥ )) |
46 | 45 | ax-r1 35 |
. . . . . . . . . . . . . . 15
(b ∩ (b⊥ ∩ a⊥ )) = ((b ∩ b⊥ ) ∩ a⊥ ) |
47 | 46 | lan 77 |
. . . . . . . . . . . . . 14
(a ∩ (b ∩ (b⊥ ∩ a⊥ ))) = (a ∩ ((b
∩ b⊥ ) ∩ a⊥ )) |
48 | | ancom 74 |
. . . . . . . . . . . . . . . . 17
((b ∩ b⊥ ) ∩ a⊥ ) = (a⊥ ∩ (b ∩ b⊥ )) |
49 | | dff 101 |
. . . . . . . . . . . . . . . . . . . 20
0 = (b ∩ b⊥ ) |
50 | 49 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . 19
(b ∩ b⊥ ) = 0 |
51 | 50 | lan 77 |
. . . . . . . . . . . . . . . . . 18
(a⊥ ∩ (b ∩ b⊥ )) = (a⊥ ∩ 0) |
52 | | an0 108 |
. . . . . . . . . . . . . . . . . 18
(a⊥ ∩ 0) =
0 |
53 | 51, 52 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(a⊥ ∩ (b ∩ b⊥ )) = 0 |
54 | 48, 53 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
((b ∩ b⊥ ) ∩ a⊥ ) = 0 |
55 | 54 | lan 77 |
. . . . . . . . . . . . . . 15
(a ∩ ((b ∩ b⊥ ) ∩ a⊥ )) = (a ∩ 0) |
56 | | an0 108 |
. . . . . . . . . . . . . . 15
(a ∩ 0) = 0 |
57 | 55, 56 | ax-r2 36 |
. . . . . . . . . . . . . 14
(a ∩ ((b ∩ b⊥ ) ∩ a⊥ )) = 0 |
58 | 47, 57 | ax-r2 36 |
. . . . . . . . . . . . 13
(a ∩ (b ∩ (b⊥ ∩ a⊥ ))) = 0 |
59 | 44, 58 | ax-r2 36 |
. . . . . . . . . . . 12
((a ∩ b) ∩ (b⊥ ∩ a⊥ )) = 0 |
60 | | anass 76 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∩ (b⊥ ∩ a⊥ )) = (a⊥ ∩ (b ∩ (b⊥ ∩ a⊥ ))) |
61 | 46 | lan 77 |
. . . . . . . . . . . . . 14
(a⊥ ∩ (b ∩ (b⊥ ∩ a⊥ ))) = (a⊥ ∩ ((b ∩ b⊥ ) ∩ a⊥ )) |
62 | 54 | lan 77 |
. . . . . . . . . . . . . . 15
(a⊥ ∩
((b ∩ b⊥ ) ∩ a⊥ )) = (a⊥ ∩ 0) |
63 | 62, 52 | ax-r2 36 |
. . . . . . . . . . . . . 14
(a⊥ ∩
((b ∩ b⊥ ) ∩ a⊥ )) = 0 |
64 | 61, 63 | ax-r2 36 |
. . . . . . . . . . . . 13
(a⊥ ∩ (b ∩ (b⊥ ∩ a⊥ ))) = 0 |
65 | 60, 64 | ax-r2 36 |
. . . . . . . . . . . 12
((a⊥ ∩ b) ∩ (b⊥ ∩ a⊥ )) = 0 |
66 | 59, 65 | 2or 72 |
. . . . . . . . . . 11
(((a ∩ b) ∩ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (b⊥ ∩ a⊥ ))) = (0 ∪
0) |
67 | | or0 102 |
. . . . . . . . . . 11
(0 ∪ 0) = 0 |
68 | 66, 67 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∩ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b) ∩ (b⊥ ∩ a⊥ ))) = 0 |
69 | 43, 68 | ax-r2 36 |
. . . . . . . . 9
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a⊥ )) = 0 |
70 | | ancom 74 |
. . . . . . . . . . 11
(b⊥ ∩ a⊥ ) = (a⊥ ∩ b⊥ ) |
71 | 70 | lan 77 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a⊥ )) = ((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )) |
72 | | anidm 111 |
. . . . . . . . . 10
((a⊥ ∩ b⊥ ) ∩ (a⊥ ∩ b⊥ )) = (a⊥ ∩ b⊥ ) |
73 | 71, 72 | ax-r2 36 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
74 | 69, 73 | 2or 72 |
. . . . . . . 8
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a⊥ ))) = (0 ∪ (a⊥ ∩ b⊥ )) |
75 | | ax-a2 31 |
. . . . . . . . 9
(0 ∪ (a⊥ ∩
b⊥ )) = ((a⊥ ∩ b⊥ ) ∪ 0) |
76 | | or0 102 |
. . . . . . . . 9
((a⊥ ∩ b⊥ ) ∪ 0) = (a⊥ ∩ b⊥ ) |
77 | 75, 76 | ax-r2 36 |
. . . . . . . 8
(0 ∪ (a⊥ ∩
b⊥ )) = (a⊥ ∩ b⊥ ) |
78 | 74, 77 | ax-r2 36 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a⊥ )) ∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a⊥ ))) = (a⊥ ∩ b⊥ ) |
79 | 42, 78 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a⊥ )) = (a⊥ ∩ b⊥ ) |
80 | 24, 22 | com2an 484 |
. . . . . . . . . 10
(b ∩ a) C (a
∩ b) |
81 | 25, 22 | com2an 484 |
. . . . . . . . . 10
(b ∩ a) C (a⊥ ∩ b) |
82 | 80, 81 | com2or 483 |
. . . . . . . . 9
(b ∩ a) C ((a
∩ b) ∪ (a⊥ ∩ b)) |
83 | 25, 23 | com2an 484 |
. . . . . . . . 9
(b ∩ a) C (a⊥ ∩ b⊥ ) |
84 | 82, 83 | com2or 483 |
. . . . . . . 8
(b ∩ a) C (((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) |
85 | 23, 24 | com2an 484 |
. . . . . . . 8
(b ∩ a) C (b⊥ ∩ a) |
86 | 84, 85 | fh2 470 |
. . . . . . 7
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) = (((((a
∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b ∩ a))
∪ ((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a))) |
87 | 82, 83 | fh1r 473 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b ∩ a)) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ ((a⊥ ∩ b⊥ ) ∩ (b ∩ a))) |
88 | | anass 76 |
. . . . . . . . . . . . 13
((a⊥ ∩ b⊥ ) ∩ (b ∩ a)) =
(a⊥ ∩ (b⊥ ∩ (b ∩ a))) |
89 | | an12 81 |
. . . . . . . . . . . . . . . . 17
(b ∩ (b⊥ ∩ a)) = (b⊥ ∩ (b ∩ a)) |
90 | 89 | ax-r1 35 |
. . . . . . . . . . . . . . . 16
(b⊥ ∩ (b ∩ a)) =
(b ∩ (b⊥ ∩ a)) |
91 | | anass 76 |
. . . . . . . . . . . . . . . . . 18
((b ∩ b⊥ ) ∩ a) = (b ∩
(b⊥ ∩ a)) |
92 | 91 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(b ∩ (b⊥ ∩ a)) = ((b ∩
b⊥ ) ∩ a) |
93 | | ancom 74 |
. . . . . . . . . . . . . . . . . 18
((b ∩ b⊥ ) ∩ a) = (a ∩
(b ∩ b⊥ )) |
94 | 50 | lan 77 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ (b ∩ b⊥ )) = (a ∩ 0) |
95 | 94, 56 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(a ∩ (b ∩ b⊥ )) = 0 |
96 | 93, 95 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
((b ∩ b⊥ ) ∩ a) = 0 |
97 | 92, 96 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(b ∩ (b⊥ ∩ a)) = 0 |
98 | 90, 97 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(b⊥ ∩ (b ∩ a)) =
0 |
99 | 98 | lan 77 |
. . . . . . . . . . . . . 14
(a⊥ ∩ (b⊥ ∩ (b ∩ a))) =
(a⊥ ∩
0) |
100 | 99, 52 | ax-r2 36 |
. . . . . . . . . . . . 13
(a⊥ ∩ (b⊥ ∩ (b ∩ a))) =
0 |
101 | 88, 100 | ax-r2 36 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∩ (b ∩ a)) =
0 |
102 | 101 | lor 70 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ ((a⊥ ∩ b⊥ ) ∩ (b ∩ a))) =
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ 0) |
103 | | or0 102 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ 0) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (b
∩ a)) |
104 | 102, 103 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ ((a⊥ ∩ b⊥ ) ∩ (b ∩ a))) =
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) |
105 | 87, 104 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b ∩ a)) =
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) |
106 | 28 | comcom3 454 |
. . . . . . . . . . . . . 14
(b⊥ ∩ a)⊥ C b⊥ |
107 | 106 | comcom5 458 |
. . . . . . . . . . . . 13
(b⊥ ∩ a) C b |
108 | 29, 107 | com2an 484 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C (a
∩ b) |
109 | 30, 107 | com2an 484 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C (a⊥ ∩ b) |
110 | 108, 109 | com2or 483 |
. . . . . . . . . . 11
(b⊥ ∩ a) C ((a
∩ b) ∪ (a⊥ ∩ b)) |
111 | 30, 28 | com2an 484 |
. . . . . . . . . . 11
(b⊥ ∩ a) C (a⊥ ∩ b⊥ ) |
112 | 110, 111 | fh1r 473 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a)) = ((((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) ∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a))) |
113 | | ancom 74 |
. . . . . . . . . . . . 13
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a)) = ((b⊥ ∩ a) ∩ (a⊥ ∩ b⊥ )) |
114 | | anass 76 |
. . . . . . . . . . . . . 14
((b⊥ ∩ a) ∩ (a⊥ ∩ b⊥ )) = (b⊥ ∩ (a ∩ (a⊥ ∩ b⊥ ))) |
115 | | anass 76 |
. . . . . . . . . . . . . . . . . 18
((a ∩ a⊥ ) ∩ b⊥ ) = (a ∩ (a⊥ ∩ b⊥ )) |
116 | 115 | ax-r1 35 |
. . . . . . . . . . . . . . . . 17
(a ∩ (a⊥ ∩ b⊥ )) = ((a ∩ a⊥ ) ∩ b⊥ ) |
117 | | ancom 74 |
. . . . . . . . . . . . . . . . . 18
((a ∩ a⊥ ) ∩ b⊥ ) = (b⊥ ∩ (a ∩ a⊥ )) |
118 | | dff 101 |
. . . . . . . . . . . . . . . . . . . . 21
0 = (a ∩ a⊥ ) |
119 | 118 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . . 20
(a ∩ a⊥ ) = 0 |
120 | 119 | lan 77 |
. . . . . . . . . . . . . . . . . . 19
(b⊥ ∩ (a ∩ a⊥ )) = (b⊥ ∩ 0) |
121 | | an0 108 |
. . . . . . . . . . . . . . . . . . 19
(b⊥ ∩ 0) =
0 |
122 | 120, 121 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(b⊥ ∩ (a ∩ a⊥ )) = 0 |
123 | 117, 122 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
((a ∩ a⊥ ) ∩ b⊥ ) = 0 |
124 | 116, 123 | ax-r2 36 |
. . . . . . . . . . . . . . . 16
(a ∩ (a⊥ ∩ b⊥ )) = 0 |
125 | 124 | lan 77 |
. . . . . . . . . . . . . . 15
(b⊥ ∩ (a ∩ (a⊥ ∩ b⊥ ))) = (b⊥ ∩ 0) |
126 | 125, 121 | ax-r2 36 |
. . . . . . . . . . . . . 14
(b⊥ ∩ (a ∩ (a⊥ ∩ b⊥ ))) = 0 |
127 | 114, 126 | ax-r2 36 |
. . . . . . . . . . . . 13
((b⊥ ∩ a) ∩ (a⊥ ∩ b⊥ )) = 0 |
128 | 113, 127 | ax-r2 36 |
. . . . . . . . . . . 12
((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a)) = 0 |
129 | 128 | lor 70 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) ∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a))) = ((((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) ∪ 0) |
130 | | or0 102 |
. . . . . . . . . . 11
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) ∪ 0) = (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (b⊥ ∩ a)) |
131 | 129, 130 | ax-r2 36 |
. . . . . . . . . 10
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) ∪ ((a⊥ ∩ b⊥ ) ∩ (b⊥ ∩ a))) = (((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) |
132 | 112, 131 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a)) = (((a ∩
b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) |
133 | 105, 132 | 2or 72 |
. . . . . . . 8
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b ∩ a))
∪ ((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a))) = ((((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (b⊥ ∩ a))) |
134 | 7, 8 | com2an 484 |
. . . . . . . . . . . . 13
(a ∩ b) C (b⊥ ∩ a) |
135 | 134 | comcom 453 |
. . . . . . . . . . . 12
(b⊥ ∩ a) C (a
∩ b) |
136 | 135, 109 | fh1r 473 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) = (((a ∩
b) ∩ (b⊥ ∩ a)) ∪ ((a⊥ ∩ b) ∩ (b⊥ ∩ a))) |
137 | | anass 76 |
. . . . . . . . . . . . . 14
((a ∩ b) ∩ (b⊥ ∩ a)) = (a ∩
(b ∩ (b⊥ ∩ a))) |
138 | 97 | lan 77 |
. . . . . . . . . . . . . . 15
(a ∩ (b ∩ (b⊥ ∩ a))) = (a ∩
0) |
139 | 138, 56 | ax-r2 36 |
. . . . . . . . . . . . . 14
(a ∩ (b ∩ (b⊥ ∩ a))) = 0 |
140 | 137, 139 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ b) ∩ (b⊥ ∩ a)) = 0 |
141 | | anass 76 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∩ (b⊥ ∩ a)) = (a⊥ ∩ (b ∩ (b⊥ ∩ a))) |
142 | 97 | lan 77 |
. . . . . . . . . . . . . . 15
(a⊥ ∩ (b ∩ (b⊥ ∩ a))) = (a⊥ ∩ 0) |
143 | 142, 52 | ax-r2 36 |
. . . . . . . . . . . . . 14
(a⊥ ∩ (b ∩ (b⊥ ∩ a))) = 0 |
144 | 141, 143 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∩ (b⊥ ∩ a)) = 0 |
145 | 140, 144 | 2or 72 |
. . . . . . . . . . . 12
(((a ∩ b) ∩ (b⊥ ∩ a)) ∪ ((a⊥ ∩ b) ∩ (b⊥ ∩ a))) = (0 ∪ 0) |
146 | 145, 67 | ax-r2 36 |
. . . . . . . . . . 11
(((a ∩ b) ∩ (b⊥ ∩ a)) ∪ ((a⊥ ∩ b) ∩ (b⊥ ∩ a))) = 0 |
147 | 136, 146 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b⊥ ∩ a)) = 0 |
148 | 147 | lor 70 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (b⊥ ∩ a))) = ((((a
∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ 0) |
149 | 80, 81 | fh1r 473 |
. . . . . . . . . . 11
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) = (((a ∩ b) ∩
(b ∩ a)) ∪ ((a⊥ ∩ b) ∩ (b
∩ a))) |
150 | | ancom 74 |
. . . . . . . . . . . . . . 15
(b ∩ a) = (a ∩
b) |
151 | 150 | lan 77 |
. . . . . . . . . . . . . 14
((a ∩ b) ∩ (b
∩ a)) = ((a ∩ b) ∩
(a ∩ b)) |
152 | | anidm 111 |
. . . . . . . . . . . . . 14
((a ∩ b) ∩ (a
∩ b)) = (a ∩ b) |
153 | 151, 152 | ax-r2 36 |
. . . . . . . . . . . . 13
((a ∩ b) ∩ (b
∩ a)) = (a ∩ b) |
154 | | ancom 74 |
. . . . . . . . . . . . . 14
((a⊥ ∩ b) ∩ (b
∩ a)) = ((b ∩ a) ∩
(a⊥ ∩ b)) |
155 | | anass 76 |
. . . . . . . . . . . . . . 15
((b ∩ a) ∩ (a⊥ ∩ b)) = (b ∩
(a ∩ (a⊥ ∩ b))) |
156 | | anass 76 |
. . . . . . . . . . . . . . . . . . . 20
((a ∩ a⊥ ) ∩ b) = (a ∩
(a⊥ ∩ b)) |
157 | 156 | ax-r1 35 |
. . . . . . . . . . . . . . . . . . 19
(a ∩ (a⊥ ∩ b)) = ((a ∩
a⊥ ) ∩ b) |
158 | 119 | ran 78 |
. . . . . . . . . . . . . . . . . . . 20
((a ∩ a⊥ ) ∩ b) = (0 ∩ b) |
159 | | ancom 74 |
. . . . . . . . . . . . . . . . . . . 20
(0 ∩ b) = (b ∩ 0) |
160 | 158, 159 | ax-r2 36 |
. . . . . . . . . . . . . . . . . . 19
((a ∩ a⊥ ) ∩ b) = (b ∩
0) |
161 | 157, 160 | ax-r2 36 |
. . . . . . . . . . . . . . . . . 18
(a ∩ (a⊥ ∩ b)) = (b ∩
0) |
162 | | an0 108 |
. . . . . . . . . . . . . . . . . 18
(b ∩ 0) = 0 |
163 | 161, 162 | ax-r2 36 |
. . . . . . . . . . . . . . . . 17
(a ∩ (a⊥ ∩ b)) = 0 |
164 | 163 | lan 77 |
. . . . . . . . . . . . . . . 16
(b ∩ (a ∩ (a⊥ ∩ b))) = (b ∩
0) |
165 | 164, 162 | ax-r2 36 |
. . . . . . . . . . . . . . 15
(b ∩ (a ∩ (a⊥ ∩ b))) = 0 |
166 | 155, 165 | ax-r2 36 |
. . . . . . . . . . . . . 14
((b ∩ a) ∩ (a⊥ ∩ b)) = 0 |
167 | 154, 166 | ax-r2 36 |
. . . . . . . . . . . . 13
((a⊥ ∩ b) ∩ (b
∩ a)) = 0 |
168 | 153, 167 | 2or 72 |
. . . . . . . . . . . 12
(((a ∩ b) ∩ (b
∩ a)) ∪ ((a⊥ ∩ b) ∩ (b
∩ a))) = ((a ∩ b) ∪
0) |
169 | | or0 102 |
. . . . . . . . . . . 12
((a ∩ b) ∪ 0) = (a
∩ b) |
170 | 168, 169 | ax-r2 36 |
. . . . . . . . . . 11
(((a ∩ b) ∩ (b
∩ a)) ∪ ((a⊥ ∩ b) ∩ (b
∩ a))) = (a ∩ b) |
171 | 149, 170 | ax-r2 36 |
. . . . . . . . . 10
(((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) = (a ∩ b) |
172 | 103, 171 | ax-r2 36 |
. . . . . . . . 9
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ 0) = (a ∩ b) |
173 | 148, 172 | ax-r2 36 |
. . . . . . . 8
((((a ∩ b) ∪ (a⊥ ∩ b)) ∩ (b
∩ a)) ∪ (((a ∩ b) ∪
(a⊥ ∩ b)) ∩ (b⊥ ∩ a))) = (a ∩
b) |
174 | 133, 173 | ax-r2 36 |
. . . . . . 7
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b ∩ a))
∪ ((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a))) = (a ∩
b) |
175 | 86, 174 | ax-r2 36 |
. . . . . 6
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b ∩ a) ∪
(b⊥ ∩ a))) = (a ∩
b) |
176 | 79, 175 | 2or 72 |
. . . . 5
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a⊥ )) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b ∩ a) ∪
(b⊥ ∩ a)))) = ((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) |
177 | | ax-a2 31 |
. . . . 5
((a⊥ ∩ b⊥ ) ∪ (a ∩ b)) =
((a ∩ b) ∪ (a⊥ ∩ b⊥ )) |
178 | 176, 177 | ax-r2 36 |
. . . 4
(((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (b⊥ ∩ a⊥ )) ∪ ((((a ∩ b) ∪
(a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b ∩ a) ∪
(b⊥ ∩ a)))) = ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
179 | 34, 178 | ax-r2 36 |
. . 3
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ ((b⊥ ∩ a⊥ ) ∪ ((b ∩ a) ∪
(b⊥ ∩ a)))) = ((a
∩ b) ∪ (a⊥ ∩ b⊥ )) |
180 | 5, 179 | ax-r2 36 |
. 2
((((a ∩ b) ∪ (a⊥ ∩ b)) ∪ (a⊥ ∩ b⊥ )) ∩ (((b ∩ a) ∪
(b⊥ ∩ a)) ∪ (b⊥ ∩ a⊥ ))) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |
181 | 3, 180 | ax-r2 36 |
1
((a →5 b) ∩ (b
→5 a)) = ((a ∩ b) ∪
(a⊥ ∩ b⊥ )) |