ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arisum2 Unicode version

Theorem arisum2 11268
Description: Arithmetic series sum of the first  N nonnegative integers. (Contributed by Mario Carneiro, 17-Apr-2015.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
arisum2  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Distinct variable group:    k, N

Proof of Theorem arisum2
StepHypRef Expression
1 elnn0 8979 . 2  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
2 nnm1nn0 9018 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
3 nn0uz 9360 . . . . . 6  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleqtrdi 2232 . . . . 5  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ( ZZ>= `  0
) )
5 elfznn0 9894 . . . . . . 7  |-  ( k  e.  ( 0 ... ( N  -  1 ) )  ->  k  e.  NN0 )
65adantl 275 . . . . . 6  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  NN0 )
76nn0cnd 9032 . . . . 5  |-  ( ( N  e.  NN  /\  k  e.  ( 0 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
8 id 19 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
94, 7, 8fsum1p 11187 . . . 4  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k ) )
10 1e0p1 9223 . . . . . . . . 9  |-  1  =  ( 0  +  1 )
1110oveq1i 5784 . . . . . . . 8  |-  ( 1 ... ( N  - 
1 ) )  =  ( ( 0  +  1 ) ... ( N  -  1 ) )
1211sumeq1i 11132 . . . . . . 7  |-  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  sum_ k  e.  ( (
0  +  1 ) ... ( N  - 
1 ) ) k
1312oveq2i 5785 . . . . . 6  |-  ( 0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  =  ( 0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )
14 1zzd 9081 . . . . . . . . 9  |-  ( N  e.  NN  ->  1  e.  ZZ )
152nn0zd 9171 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  ZZ )
1614, 15fzfigd 10204 . . . . . . . 8  |-  ( N  e.  NN  ->  (
1 ... ( N  - 
1 ) )  e. 
Fin )
17 elfznn 9834 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( N  -  1 ) )  ->  k  e.  NN )
1817adantl 275 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  NN )
1918nncnd 8734 . . . . . . . 8  |-  ( ( N  e.  NN  /\  k  e.  ( 1 ... ( N  - 
1 ) ) )  ->  k  e.  CC )
2016, 19fsumcl 11169 . . . . . . 7  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  e.  CC )
2120addid2d 7912 . . . . . 6  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
2213, 21syl5eqr 2186 . . . . 5  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  = 
sum_ k  e.  ( 1 ... ( N  -  1 ) ) k )
23 arisum 11267 . . . . . . 7  |-  ( ( N  -  1 )  e.  NN0  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
242, 23syl 14 . . . . . 6  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 ) )
25 nncn 8728 . . . . . . . . . . . . . 14  |-  ( N  e.  NN  ->  N  e.  CC )
26252timesd 8962 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  (
2  x.  N )  =  ( N  +  N ) )
2726oveq2d 5790 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  N ) )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
2825sqcld 10422 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  ( N ^ 2 )  e.  CC )
2928, 25, 25subsub4d 8104 . . . . . . . . . . . 12  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  N )  =  ( ( N ^ 2 )  -  ( N  +  N
) ) )
3027, 29eqtr4d 2175 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  ( 2  x.  N ) )  =  ( ( ( N ^ 2 )  -  N )  -  N ) )
3130oveq1d 5789 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  (
2  x.  N ) )  +  1 )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
32 binom2sub1 10406 . . . . . . . . . . 11  |-  ( N  e.  CC  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  N ) )  +  1 ) )
3325, 32syl 14 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  ( 2  x.  N ) )  +  1 ) )
3428, 25subcld 8073 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  (
( N ^ 2 )  -  N )  e.  CC )
35 1cnd 7782 . . . . . . . . . . 11  |-  ( N  e.  NN  ->  1  e.  CC )
3634, 25, 35subsubd 8101 . . . . . . . . . 10  |-  ( N  e.  NN  ->  (
( ( N ^
2 )  -  N
)  -  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  N )  +  1 ) )
3731, 33, 363eqtr4d 2182 . . . . . . . . 9  |-  ( N  e.  NN  ->  (
( N  -  1 ) ^ 2 )  =  ( ( ( N ^ 2 )  -  N )  -  ( N  -  1
) ) )
3837oveq1d 5789 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( ( ( N ^ 2 )  -  N )  -  ( N  - 
1 ) )  +  ( N  -  1 ) ) )
39 ax-1cn 7713 . . . . . . . . . 10  |-  1  e.  CC
40 subcl 7961 . . . . . . . . . 10  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( N  -  1 )  e.  CC )
4125, 39, 40sylancl 409 . . . . . . . . 9  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  CC )
4234, 41npcand 8077 . . . . . . . 8  |-  ( N  e.  NN  ->  (
( ( ( N ^ 2 )  -  N )  -  ( N  -  1 ) )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4338, 42eqtrd 2172 . . . . . . 7  |-  ( N  e.  NN  ->  (
( ( N  - 
1 ) ^ 2 )  +  ( N  -  1 ) )  =  ( ( N ^ 2 )  -  N ) )
4443oveq1d 5789 . . . . . 6  |-  ( N  e.  NN  ->  (
( ( ( N  -  1 ) ^
2 )  +  ( N  -  1 ) )  /  2 )  =  ( ( ( N ^ 2 )  -  N )  / 
2 ) )
4524, 44eqtrd 2172 . . . . 5  |-  ( N  e.  NN  ->  sum_ k  e.  ( 1 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
4622, 45eqtrd 2172 . . . 4  |-  ( N  e.  NN  ->  (
0  +  sum_ k  e.  ( ( 0  +  1 ) ... ( N  -  1 ) ) k )  =  ( ( ( N ^ 2 )  -  N )  /  2
) )
479, 46eqtrd 2172 . . 3  |-  ( N  e.  NN  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
48 oveq1 5781 . . . . . . . 8  |-  ( N  =  0  ->  ( N  -  1 )  =  ( 0  -  1 ) )
4948oveq2d 5790 . . . . . . 7  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  ( 0 ... (
0  -  1 ) ) )
50 0re 7766 . . . . . . . . 9  |-  0  e.  RR
51 ltm1 8604 . . . . . . . . 9  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
5250, 51ax-mp 5 . . . . . . . 8  |-  ( 0  -  1 )  <  0
53 0z 9065 . . . . . . . . 9  |-  0  e.  ZZ
54 peano2zm 9092 . . . . . . . . . 10  |-  ( 0  e.  ZZ  ->  (
0  -  1 )  e.  ZZ )
5553, 54ax-mp 5 . . . . . . . . 9  |-  ( 0  -  1 )  e.  ZZ
56 fzn 9822 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  ( 0  -  1 )  e.  ZZ )  ->  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) ) )
5753, 55, 56mp2an 422 . . . . . . . 8  |-  ( ( 0  -  1 )  <  0  <->  ( 0 ... ( 0  -  1 ) )  =  (/) )
5852, 57mpbi 144 . . . . . . 7  |-  ( 0 ... ( 0  -  1 ) )  =  (/)
5949, 58syl6eq 2188 . . . . . 6  |-  ( N  =  0  ->  (
0 ... ( N  - 
1 ) )  =  (/) )
6059sumeq1d 11135 . . . . 5  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  sum_ k  e.  (/)  k )
61 sum0 11157 . . . . 5  |-  sum_ k  e.  (/)  k  =  0
6260, 61syl6eq 2188 . . . 4  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  0 )
63 sq0i 10384 . . . . . . . 8  |-  ( N  =  0  ->  ( N ^ 2 )  =  0 )
64 id 19 . . . . . . . 8  |-  ( N  =  0  ->  N  =  0 )
6563, 64oveq12d 5792 . . . . . . 7  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  ( 0  -  0 ) )
66 0m0e0 8832 . . . . . . 7  |-  ( 0  -  0 )  =  0
6765, 66syl6eq 2188 . . . . . 6  |-  ( N  =  0  ->  (
( N ^ 2 )  -  N )  =  0 )
6867oveq1d 5789 . . . . 5  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  ( 0  / 
2 ) )
69 2cn 8791 . . . . . 6  |-  2  e.  CC
70 2ap0 8813 . . . . . 6  |-  2 #  0
7169, 70div0api 8506 . . . . 5  |-  ( 0  /  2 )  =  0
7268, 71syl6eq 2188 . . . 4  |-  ( N  =  0  ->  (
( ( N ^
2 )  -  N
)  /  2 )  =  0 )
7362, 72eqtr4d 2175 . . 3  |-  ( N  =  0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
7447, 73jaoi 705 . 2  |-  ( ( N  e.  NN  \/  N  =  0 )  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^ 2 )  -  N )  /  2 ) )
751, 74sylbi 120 1  |-  ( N  e.  NN0  ->  sum_ k  e.  ( 0 ... ( N  -  1 ) ) k  =  ( ( ( N ^
2 )  -  N
)  /  2 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   (/)c0 3363   class class class wbr 3929   ` cfv 5123  (class class class)co 5774   CCcc 7618   RRcr 7619   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    < clt 7800    - cmin 7933    / cdiv 8432   NNcn 8720   2c2 8771   NN0cn0 8977   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790   ^cexp 10292   sum_csu 11122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-isom 5132  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-irdg 6267  df-frec 6288  df-1o 6313  df-oadd 6317  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-seqfrec 10219  df-exp 10293  df-fac 10472  df-bc 10494  df-ihash 10522  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048  df-sumdc 11123
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator