Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  nnacl GIF version

Theorem nnacl 6144
 Description: Closure of addition of natural numbers. Proposition 8.9 of [TakeutiZaring] p. 59. (Contributed by NM, 20-Sep-1995.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
nnacl ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω)

Proof of Theorem nnacl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5571 . . . . 5 (𝑥 = 𝐵 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝐵))
21eleq1d 2151 . . . 4 (𝑥 = 𝐵 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 𝐵) ∈ ω))
32imbi2d 228 . . 3 (𝑥 = 𝐵 → ((𝐴 ∈ ω → (𝐴 +𝑜 𝑥) ∈ ω) ↔ (𝐴 ∈ ω → (𝐴 +𝑜 𝐵) ∈ ω)))
4 oveq2 5571 . . . . 5 (𝑥 = ∅ → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 ∅))
54eleq1d 2151 . . . 4 (𝑥 = ∅ → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 ∅) ∈ ω))
6 oveq2 5571 . . . . 5 (𝑥 = 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 𝑦))
76eleq1d 2151 . . . 4 (𝑥 = 𝑦 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 𝑦) ∈ ω))
8 oveq2 5571 . . . . 5 (𝑥 = suc 𝑦 → (𝐴 +𝑜 𝑥) = (𝐴 +𝑜 suc 𝑦))
98eleq1d 2151 . . . 4 (𝑥 = suc 𝑦 → ((𝐴 +𝑜 𝑥) ∈ ω ↔ (𝐴 +𝑜 suc 𝑦) ∈ ω))
10 nna0 6138 . . . . . 6 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) = 𝐴)
1110eleq1d 2151 . . . . 5 (𝐴 ∈ ω → ((𝐴 +𝑜 ∅) ∈ ω ↔ 𝐴 ∈ ω))
1211ibir 175 . . . 4 (𝐴 ∈ ω → (𝐴 +𝑜 ∅) ∈ ω)
13 peano2 4364 . . . . . 6 ((𝐴 +𝑜 𝑦) ∈ ω → suc (𝐴 +𝑜 𝑦) ∈ ω)
14 nnasuc 6140 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → (𝐴 +𝑜 suc 𝑦) = suc (𝐴 +𝑜 𝑦))
1514eleq1d 2151 . . . . . 6 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +𝑜 suc 𝑦) ∈ ω ↔ suc (𝐴 +𝑜 𝑦) ∈ ω))
1613, 15syl5ibr 154 . . . . 5 ((𝐴 ∈ ω ∧ 𝑦 ∈ ω) → ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 suc 𝑦) ∈ ω))
1716expcom 114 . . . 4 (𝑦 ∈ ω → (𝐴 ∈ ω → ((𝐴 +𝑜 𝑦) ∈ ω → (𝐴 +𝑜 suc 𝑦) ∈ ω)))
185, 7, 9, 12, 17finds2 4370 . . 3 (𝑥 ∈ ω → (𝐴 ∈ ω → (𝐴 +𝑜 𝑥) ∈ ω))
193, 18vtoclga 2673 . 2 (𝐵 ∈ ω → (𝐴 ∈ ω → (𝐴 +𝑜 𝐵) ∈ ω))
2019impcom 123 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 +𝑜 𝐵) ∈ ω)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 102   = wceq 1285   ∈ wcel 1434  ∅c0 3267  suc csuc 4148  ωcom 4359  (class class class)co 5563   +𝑜 coa 6082 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-oadd 6089 This theorem is referenced by:  nnmcl  6145  nnacli  6146  nnaass  6149  nndi  6150  nndir  6154  nnaordi  6168  nnaord  6169  nnaword  6171  addclpi  6631  nnppipi  6647  archnqq  6721  addcmpblnq0  6747  addclnq0  6755  nnanq0  6762  distrnq0  6763  addassnq0lemcl  6765  prarloclemlt  6797  prarloclemlo  6798  prarloclem3  6801  omgadd  9878  hashunlem  9880  hashun  9881
 Copyright terms: Public domain W3C validator