Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1neven Structured version   Visualization version   GIF version

Theorem 1neven 44223
Description: 1 is not an even integer. (Contributed by AV, 12-Feb-2020.)
Hypothesis
Ref Expression
2zrng.e 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
Assertion
Ref Expression
1neven 1 ∉ 𝐸
Distinct variable group:   𝑥,𝑧
Allowed substitution hints:   𝐸(𝑥,𝑧)

Proof of Theorem 1neven
StepHypRef Expression
1 halfnz 12061 . . . . . . 7 ¬ (1 / 2) ∈ ℤ
2 eleq1a 2908 . . . . . . 7 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 → (1 / 2) ∈ ℤ))
31, 2mtoi 201 . . . . . 6 (𝑥 ∈ ℤ → ¬ (1 / 2) = 𝑥)
4 1cnd 10636 . . . . . . 7 (𝑥 ∈ ℤ → 1 ∈ ℂ)
5 zcn 11987 . . . . . . 7 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
6 2cnne0 11848 . . . . . . . 8 (2 ∈ ℂ ∧ 2 ≠ 0)
76a1i 11 . . . . . . 7 (𝑥 ∈ ℤ → (2 ∈ ℂ ∧ 2 ≠ 0))
8 divmul2 11302 . . . . . . 7 ((1 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
94, 5, 7, 8syl3anc 1367 . . . . . 6 (𝑥 ∈ ℤ → ((1 / 2) = 𝑥 ↔ 1 = (2 · 𝑥)))
103, 9mtbid 326 . . . . 5 (𝑥 ∈ ℤ → ¬ 1 = (2 · 𝑥))
1110nrex 3269 . . . 4 ¬ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)
1211intnan 489 . . 3 ¬ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥))
13 eqeq1 2825 . . . . 5 (𝑧 = 1 → (𝑧 = (2 · 𝑥) ↔ 1 = (2 · 𝑥)))
1413rexbidv 3297 . . . 4 (𝑧 = 1 → (∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥) ↔ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)))
15 2zrng.e . . . 4 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)}
1614, 15elrab2 3683 . . 3 (1 ∈ 𝐸 ↔ (1 ∈ ℤ ∧ ∃𝑥 ∈ ℤ 1 = (2 · 𝑥)))
1712, 16mtbir 325 . 2 ¬ 1 ∈ 𝐸
1817nelir 3126 1 1 ∉ 𝐸
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wnel 3123  wrex 3139  {crab 3142  (class class class)co 7156  cc 10535  0cc0 10537  1c1 10538   · cmul 10542   / cdiv 11297  2c2 11693  cz 11982
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-n0 11899  df-z 11983
This theorem is referenced by:  2zrngnmlid  44240  2zrngnmrid  44241
  Copyright terms: Public domain W3C validator