MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6sg Structured version   Visualization version   GIF version

Theorem ac6sg 9171
Description: ac6s 9167 with sethood as antecedent. (Contributed by FL, 3-Aug-2009.)
Hypothesis
Ref Expression
ac6sg.1 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
Assertion
Ref Expression
ac6sg (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓,𝑥,𝑦   𝜑,𝑓   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑓)   𝐴(𝑦)   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem ac6sg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 raleq 3114 . . 3 (𝑧 = 𝐴 → (∀𝑥𝑧𝑦𝐵 𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜑))
2 feq2 5926 . . . . 5 (𝑧 = 𝐴 → (𝑓:𝑧𝐵𝑓:𝐴𝐵))
3 raleq 3114 . . . . 5 (𝑧 = 𝐴 → (∀𝑥𝑧 𝜓 ↔ ∀𝑥𝐴 𝜓))
42, 3anbi12d 742 . . . 4 (𝑧 = 𝐴 → ((𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ (𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
54exbidv 1836 . . 3 (𝑧 = 𝐴 → (∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓) ↔ ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
61, 5imbi12d 332 . 2 (𝑧 = 𝐴 → ((∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓)) ↔ (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓))))
7 vex 3175 . . 3 𝑧 ∈ V
8 ac6sg.1 . . 3 (𝑦 = (𝑓𝑥) → (𝜑𝜓))
97, 8ac6s 9167 . 2 (∀𝑥𝑧𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝑧𝐵 ∧ ∀𝑥𝑧 𝜓))
106, 9vtoclg 3238 1 (𝐴𝑉 → (∀𝑥𝐴𝑦𝐵 𝜑 → ∃𝑓(𝑓:𝐴𝐵 ∧ ∀𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382   = wceq 1474  wex 1694  wcel 1976  wral 2895  wrex 2896  wf 5786  cfv 5790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-reg 8358  ax-inf2 8399  ax-ac2 9146
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-om 6936  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-en 7820  df-r1 8488  df-rank 8489  df-card 8626  df-ac 8800
This theorem is referenced by:  acsmapd  16950  foresf1o  28561  reff  29068  cmpcref  29079  omssubadd  29523  ac6gf  32521
  Copyright terms: Public domain W3C validator