MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ackbij1lem15 Structured version   Visualization version   GIF version

Theorem ackbij1lem15 9246
Description: Lemma for ackbij1 9250. (Contributed by Stefan O'Rear, 18-Nov-2014.)
Hypothesis
Ref Expression
ackbij.f 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
Assertion
Ref Expression
ackbij1lem15 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Distinct variable groups:   𝐹,𝑐,𝑥,𝑦   𝐴,𝑐,𝑥,𝑦   𝐵,𝑐,𝑥,𝑦

Proof of Theorem ackbij1lem15
StepHypRef Expression
1 simpr1 1234 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ ω)
2 ackbij1lem3 9234 . . . . . . 7 (𝑐 ∈ ω → 𝑐 ∈ (𝒫 ω ∩ Fin))
31, 2syl 17 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐 ∈ (𝒫 ω ∩ Fin))
4 simpr3 1238 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ 𝑐𝐵)
5 ackbij1lem1 9232 . . . . . . . 8 𝑐𝐵 → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
64, 5syl 17 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) = (𝐵𝑐))
7 inss2 3975 . . . . . . 7 (𝐵𝑐) ⊆ 𝑐
86, 7syl6eqss 3794 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐵 ∩ suc 𝑐) ⊆ 𝑐)
9 ackbij.f . . . . . . 7 𝐹 = (𝑥 ∈ (𝒫 ω ∩ Fin) ↦ (card‘ 𝑦𝑥 ({𝑦} × 𝒫 𝑦)))
109ackbij1lem12 9243 . . . . . 6 ((𝑐 ∈ (𝒫 ω ∩ Fin) ∧ (𝐵 ∩ suc 𝑐) ⊆ 𝑐) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
113, 8, 10syl2anc 696 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊆ (𝐹𝑐))
129ackbij1lem10 9241 . . . . . . . . 9 𝐹:(𝒫 ω ∩ Fin)⟶ω
1312ffvelrni 6519 . . . . . . . 8 (𝑐 ∈ (𝒫 ω ∩ Fin) → (𝐹𝑐) ∈ ω)
14 nnon 7234 . . . . . . . 8 ((𝐹𝑐) ∈ ω → (𝐹𝑐) ∈ On)
15 onpsssuc 7182 . . . . . . . 8 ((𝐹𝑐) ∈ On → (𝐹𝑐) ⊊ suc (𝐹𝑐))
163, 13, 14, 154syl 19 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ suc (𝐹𝑐))
179ackbij1lem14 9245 . . . . . . . . 9 (𝑐 ∈ ω → (𝐹‘{𝑐}) = suc (𝐹𝑐))
181, 17syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) = suc (𝐹𝑐))
1918psseq2d 3840 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ((𝐹𝑐) ⊊ (𝐹‘{𝑐}) ↔ (𝐹𝑐) ⊊ suc (𝐹𝑐)))
2016, 19mpbird 247 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘{𝑐}))
21 simpll 807 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝐴 ∈ (𝒫 ω ∩ Fin))
22 inss1 3974 . . . . . . . 8 (𝐴 ∩ suc 𝑐) ⊆ 𝐴
239ackbij1lem11 9242 . . . . . . . 8 ((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ (𝐴 ∩ suc 𝑐) ⊆ 𝐴) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
2421, 22, 23sylancl 697 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin))
25 ssun1 3917 . . . . . . . 8 {𝑐} ⊆ ({𝑐} ∪ (𝐴𝑐))
26 simpr2 1236 . . . . . . . . 9 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → 𝑐𝐴)
27 ackbij1lem2 9233 . . . . . . . . 9 (𝑐𝐴 → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2826, 27syl 17 . . . . . . . 8 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐴 ∩ suc 𝑐) = ({𝑐} ∪ (𝐴𝑐)))
2925, 28syl5sseqr 3793 . . . . . . 7 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → {𝑐} ⊆ (𝐴 ∩ suc 𝑐))
309ackbij1lem12 9243 . . . . . . 7 (((𝐴 ∩ suc 𝑐) ∈ (𝒫 ω ∩ Fin) ∧ {𝑐} ⊆ (𝐴 ∩ suc 𝑐)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3124, 29, 30syl2anc 696 . . . . . 6 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘{𝑐}) ⊆ (𝐹‘(𝐴 ∩ suc 𝑐)))
3220, 31psssstrd 3856 . . . . 5 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹𝑐) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3311, 32sspsstrd 3855 . . . 4 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ⊊ (𝐹‘(𝐴 ∩ suc 𝑐)))
3433pssned 3845 . . 3 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐵 ∩ suc 𝑐)) ≠ (𝐹‘(𝐴 ∩ suc 𝑐)))
3534necomd 2985 . 2 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → (𝐹‘(𝐴 ∩ suc 𝑐)) ≠ (𝐹‘(𝐵 ∩ suc 𝑐)))
3635neneqd 2935 1 (((𝐴 ∈ (𝒫 ω ∩ Fin) ∧ 𝐵 ∈ (𝒫 ω ∩ Fin)) ∧ (𝑐 ∈ ω ∧ 𝑐𝐴 ∧ ¬ 𝑐𝐵)) → ¬ (𝐹‘(𝐴 ∩ suc 𝑐)) = (𝐹‘(𝐵 ∩ suc 𝑐)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1072   = wceq 1630  wcel 2137  cun 3711  cin 3712  wss 3713  wpss 3714  𝒫 cpw 4300  {csn 4319   ciun 4670  cmpt 4879   × cxp 5262  Oncon0 5882  suc csuc 5884  cfv 6047  ωcom 7228  Fincfn 8119  cardccrd 8949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1986  ax-6 2052  ax-7 2088  ax-8 2139  ax-9 2146  ax-10 2166  ax-11 2181  ax-12 2194  ax-13 2389  ax-ext 2738  ax-rep 4921  ax-sep 4931  ax-nul 4939  ax-pow 4990  ax-pr 5053  ax-un 7112
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2045  df-eu 2609  df-mo 2610  df-clab 2745  df-cleq 2751  df-clel 2754  df-nfc 2889  df-ne 2931  df-ral 3053  df-rex 3054  df-reu 3055  df-rmo 3056  df-rab 3057  df-v 3340  df-sbc 3575  df-csb 3673  df-dif 3716  df-un 3718  df-in 3720  df-ss 3727  df-pss 3729  df-nul 4057  df-if 4229  df-pw 4302  df-sn 4320  df-pr 4322  df-tp 4324  df-op 4326  df-uni 4587  df-int 4626  df-iun 4672  df-br 4803  df-opab 4863  df-mpt 4880  df-tr 4903  df-id 5172  df-eprel 5177  df-po 5185  df-so 5186  df-fr 5223  df-we 5225  df-xp 5270  df-rel 5271  df-cnv 5272  df-co 5273  df-dm 5274  df-rn 5275  df-res 5276  df-ima 5277  df-pred 5839  df-ord 5885  df-on 5886  df-lim 5887  df-suc 5888  df-iota 6010  df-fun 6049  df-fn 6050  df-f 6051  df-f1 6052  df-fo 6053  df-f1o 6054  df-fv 6055  df-ov 6814  df-oprab 6815  df-mpt2 6816  df-om 7229  df-1st 7331  df-2nd 7332  df-wrecs 7574  df-recs 7635  df-rdg 7673  df-1o 7727  df-2o 7728  df-oadd 7731  df-er 7909  df-map 8023  df-en 8120  df-dom 8121  df-sdom 8122  df-fin 8123  df-card 8953  df-cda 9180
This theorem is referenced by:  ackbij1lem16  9247
  Copyright terms: Public domain W3C validator