MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsficl Structured version   Visualization version   GIF version

Theorem acsficl 17777
Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsficl ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝐹𝑆) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))

Proof of Theorem acsficl
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6667 . . 3 (𝑠 = 𝑆 → (𝐹𝑠) = (𝐹𝑆))
2 pweq 4552 . . . . . 6 (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆)
32ineq1d 4185 . . . . 5 (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin))
43imaeq2d 5926 . . . 4 (𝑠 = 𝑆 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))
54unieqd 4849 . . 3 (𝑠 = 𝑆 (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))
61, 5eqeq12d 2836 . 2 (𝑠 = 𝑆 → ((𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)) ↔ (𝐹𝑆) = (𝐹 “ (𝒫 𝑆 ∩ Fin))))
7 isacs3lem 17772 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
8 acsdrscl.f . . . . . 6 𝐹 = (mrCls‘𝐶)
98isacs4lem 17774 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
108isacs5lem 17775 . . . . 5 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
117, 9, 103syl 18 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin))))
1211simprd 498 . . 3 (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
1312adantr 483 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹𝑠) = (𝐹 “ (𝒫 𝑠 ∩ Fin)))
14 elfvdm 6699 . . . 4 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS)
15 elpw2g 5244 . . . 4 (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1614, 15syl 17 . . 3 (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋𝑆𝑋))
1716biimpar 480 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → 𝑆 ∈ 𝒫 𝑋)
186, 13, 17rspcdva 3624 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆𝑋) → (𝐹𝑆) = (𝐹 “ (𝒫 𝑆 ∩ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3137  cin 3932  wss 3933  𝒫 cpw 4536   cuni 4835  dom cdm 5552  cima 5555  cfv 6352  Fincfn 8506  Moorecmre 16849  mrClscmrc 16850  ACScacs 16852  Dirsetcdrs 17533  toInccipo 17757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5327  ax-un 7458  ax-cnex 10590  ax-resscn 10591  ax-1cn 10592  ax-icn 10593  ax-addcl 10594  ax-addrcl 10595  ax-mulcl 10596  ax-mulrcl 10597  ax-mulcom 10598  ax-addass 10599  ax-mulass 10600  ax-distr 10601  ax-i2m1 10602  ax-1ne0 10603  ax-1rid 10604  ax-rnegex 10605  ax-rrecex 10606  ax-cnre 10607  ax-pre-lttri 10608  ax-pre-lttrn 10609  ax-pre-ltadd 10610  ax-pre-mulgt0 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-nel 3123  df-ral 3142  df-rex 3143  df-reu 3144  df-rab 3146  df-v 3495  df-sbc 3771  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4465  df-pw 4538  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4836  df-int 4874  df-iun 4918  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5457  df-eprel 5462  df-po 5471  df-so 5472  df-fr 5511  df-we 5513  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-res 5564  df-ima 5565  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7111  df-ov 7156  df-oprab 7157  df-mpo 7158  df-om 7578  df-1st 7686  df-2nd 7687  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-pnf 10674  df-mnf 10675  df-xr 10676  df-ltxr 10677  df-le 10678  df-sub 10869  df-neg 10870  df-nn 11636  df-2 11698  df-3 11699  df-4 11700  df-5 11701  df-6 11702  df-7 11703  df-8 11704  df-9 11705  df-n0 11896  df-z 11980  df-dec 12097  df-uz 12242  df-fz 12891  df-struct 16481  df-ndx 16482  df-slot 16483  df-base 16485  df-tset 16580  df-ple 16581  df-ocomp 16582  df-mre 16853  df-mrc 16854  df-acs 16856  df-proset 17534  df-drs 17535  df-poset 17552  df-ipo 17758
This theorem is referenced by:  acsficld  17781
  Copyright terms: Public domain W3C validator