![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acsficl | Structured version Visualization version GIF version |
Description: A closure in an algebraic closure system is the union of the closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015.) |
Ref | Expression |
---|---|
acsdrscl.f | ⊢ 𝐹 = (mrCls‘𝐶) |
Ref | Expression |
---|---|
acsficl | ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6379 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS) | |
2 | elpw2g 4974 | . . . 4 ⊢ (𝑋 ∈ dom ACS → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋)) |
4 | 3 | biimpar 503 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → 𝑆 ∈ 𝒫 𝑋) |
5 | isacs3lem 17365 | . . . . 5 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶))) | |
6 | acsdrscl.f | . . . . . 6 ⊢ 𝐹 = (mrCls‘𝐶) | |
7 | 6 | isacs4lem 17367 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → ∪ 𝑠 ∈ 𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡)))) |
8 | 6 | isacs5lem 17368 | . . . . 5 ⊢ ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹‘∪ 𝑡) = ∪ (𝐹 “ 𝑡))) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
9 | 5, 7, 8 | 3syl 18 | . . . 4 ⊢ (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)))) |
10 | 9 | simprd 482 | . . 3 ⊢ (𝐶 ∈ (ACS‘𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
11 | 10 | adantr 472 | . 2 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) |
12 | fveq2 6350 | . . . 4 ⊢ (𝑠 = 𝑆 → (𝐹‘𝑠) = (𝐹‘𝑆)) | |
13 | pweq 4303 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝒫 𝑠 = 𝒫 𝑆) | |
14 | 13 | ineq1d 3954 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝒫 𝑠 ∩ Fin) = (𝒫 𝑆 ∩ Fin)) |
15 | 14 | imaeq2d 5622 | . . . . 5 ⊢ (𝑠 = 𝑆 → (𝐹 “ (𝒫 𝑠 ∩ Fin)) = (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
16 | 15 | unieqd 4596 | . . . 4 ⊢ (𝑠 = 𝑆 → ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
17 | 12, 16 | eqeq12d 2773 | . . 3 ⊢ (𝑠 = 𝑆 → ((𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin)) ↔ (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin)))) |
18 | 17 | rspcva 3445 | . 2 ⊢ ((𝑆 ∈ 𝒫 𝑋 ∧ ∀𝑠 ∈ 𝒫 𝑋(𝐹‘𝑠) = ∪ (𝐹 “ (𝒫 𝑠 ∩ Fin))) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
19 | 4, 11, 18 | syl2anc 696 | 1 ⊢ ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑆 ⊆ 𝑋) → (𝐹‘𝑆) = ∪ (𝐹 “ (𝒫 𝑆 ∩ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1630 ∈ wcel 2137 ∀wral 3048 ∩ cin 3712 ⊆ wss 3713 𝒫 cpw 4300 ∪ cuni 4586 dom cdm 5264 “ cima 5267 ‘cfv 6047 Fincfn 8119 Moorecmre 16442 mrClscmrc 16443 ACScacs 16445 Dirsetcdrs 17126 toInccipo 17350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1986 ax-6 2052 ax-7 2088 ax-8 2139 ax-9 2146 ax-10 2166 ax-11 2181 ax-12 2194 ax-13 2389 ax-ext 2738 ax-sep 4931 ax-nul 4939 ax-pow 4990 ax-pr 5053 ax-un 7112 ax-cnex 10182 ax-resscn 10183 ax-1cn 10184 ax-icn 10185 ax-addcl 10186 ax-addrcl 10187 ax-mulcl 10188 ax-mulrcl 10189 ax-mulcom 10190 ax-addass 10191 ax-mulass 10192 ax-distr 10193 ax-i2m1 10194 ax-1ne0 10195 ax-1rid 10196 ax-rnegex 10197 ax-rrecex 10198 ax-cnre 10199 ax-pre-lttri 10200 ax-pre-lttrn 10201 ax-pre-ltadd 10202 ax-pre-mulgt0 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2045 df-eu 2609 df-mo 2610 df-clab 2745 df-cleq 2751 df-clel 2754 df-nfc 2889 df-ne 2931 df-nel 3034 df-ral 3053 df-rex 3054 df-reu 3055 df-rab 3057 df-v 3340 df-sbc 3575 df-csb 3673 df-dif 3716 df-un 3718 df-in 3720 df-ss 3727 df-pss 3729 df-nul 4057 df-if 4229 df-pw 4302 df-sn 4320 df-pr 4322 df-tp 4324 df-op 4326 df-uni 4587 df-int 4626 df-iun 4672 df-br 4803 df-opab 4863 df-mpt 4880 df-tr 4903 df-id 5172 df-eprel 5177 df-po 5185 df-so 5186 df-fr 5223 df-we 5225 df-xp 5270 df-rel 5271 df-cnv 5272 df-co 5273 df-dm 5274 df-rn 5275 df-res 5276 df-ima 5277 df-pred 5839 df-ord 5885 df-on 5886 df-lim 5887 df-suc 5888 df-iota 6010 df-fun 6049 df-fn 6050 df-f 6051 df-f1 6052 df-fo 6053 df-f1o 6054 df-fv 6055 df-riota 6772 df-ov 6814 df-oprab 6815 df-mpt2 6816 df-om 7229 df-1st 7331 df-2nd 7332 df-wrecs 7574 df-recs 7635 df-rdg 7673 df-1o 7727 df-oadd 7731 df-er 7909 df-en 8120 df-dom 8121 df-sdom 8122 df-fin 8123 df-pnf 10266 df-mnf 10267 df-xr 10268 df-ltxr 10269 df-le 10270 df-sub 10458 df-neg 10459 df-nn 11211 df-2 11269 df-3 11270 df-4 11271 df-5 11272 df-6 11273 df-7 11274 df-8 11275 df-9 11276 df-n0 11483 df-z 11568 df-dec 11684 df-uz 11878 df-fz 12518 df-struct 16059 df-ndx 16060 df-slot 16061 df-base 16063 df-tset 16160 df-ple 16161 df-ocomp 16163 df-mre 16446 df-mrc 16447 df-acs 16449 df-preset 17127 df-drs 17128 df-poset 17145 df-ipo 17351 |
This theorem is referenced by: acsficld 17374 |
Copyright terms: Public domain | W3C validator |