Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  acsdrscl Structured version   Visualization version   GIF version

Theorem acsdrscl 17102
 Description: In an algebraic closure system, closure commutes with directed unions. (Contributed by Stefan O'Rear, 2-Apr-2015.)
Hypothesis
Ref Expression
acsdrscl.f 𝐹 = (mrCls‘𝐶)
Assertion
Ref Expression
acsdrscl ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹 𝑌) = (𝐹𝑌))

Proof of Theorem acsdrscl
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6182 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → 𝑋 ∈ dom ACS)
2 pwexg 4815 . . . . 5 (𝑋 ∈ dom ACS → 𝒫 𝑋 ∈ V)
3 elpw2g 4792 . . . . 5 (𝒫 𝑋 ∈ V → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
41, 2, 33syl 18 . . . 4 (𝐶 ∈ (ACS‘𝑋) → (𝑌 ∈ 𝒫 𝒫 𝑋𝑌 ⊆ 𝒫 𝑋))
54biimpar 502 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → 𝑌 ∈ 𝒫 𝒫 𝑋)
6 isacs3lem 17098 . . . . . 6 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)))
7 acsdrscl.f . . . . . . 7 𝐹 = (mrCls‘𝐶)
87isacs4lem 17100 . . . . . 6 ((𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑠 ∈ 𝒫 𝐶((toInc‘𝑠) ∈ Dirset → 𝑠𝐶)) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
96, 8syl 17 . . . . 5 (𝐶 ∈ (ACS‘𝑋) → (𝐶 ∈ (Moore‘𝑋) ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))))
109simprd 479 . . . 4 (𝐶 ∈ (ACS‘𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
1110adantr 481 . . 3 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)))
12 fveq2 6153 . . . . . 6 (𝑡 = 𝑌 → (toInc‘𝑡) = (toInc‘𝑌))
1312eleq1d 2683 . . . . 5 (𝑡 = 𝑌 → ((toInc‘𝑡) ∈ Dirset ↔ (toInc‘𝑌) ∈ Dirset))
14 unieq 4415 . . . . . . 7 (𝑡 = 𝑌 𝑡 = 𝑌)
1514fveq2d 6157 . . . . . 6 (𝑡 = 𝑌 → (𝐹 𝑡) = (𝐹 𝑌))
16 imaeq2 5426 . . . . . . 7 (𝑡 = 𝑌 → (𝐹𝑡) = (𝐹𝑌))
1716unieqd 4417 . . . . . 6 (𝑡 = 𝑌 (𝐹𝑡) = (𝐹𝑌))
1815, 17eqeq12d 2636 . . . . 5 (𝑡 = 𝑌 → ((𝐹 𝑡) = (𝐹𝑡) ↔ (𝐹 𝑌) = (𝐹𝑌)))
1913, 18imbi12d 334 . . . 4 (𝑡 = 𝑌 → (((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡)) ↔ ((toInc‘𝑌) ∈ Dirset → (𝐹 𝑌) = (𝐹𝑌))))
2019rspcva 3296 . . 3 ((𝑌 ∈ 𝒫 𝒫 𝑋 ∧ ∀𝑡 ∈ 𝒫 𝒫 𝑋((toInc‘𝑡) ∈ Dirset → (𝐹 𝑡) = (𝐹𝑡))) → ((toInc‘𝑌) ∈ Dirset → (𝐹 𝑌) = (𝐹𝑌)))
215, 11, 20syl2anc 692 . 2 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋) → ((toInc‘𝑌) ∈ Dirset → (𝐹 𝑌) = (𝐹𝑌)))
22213impia 1258 1 ((𝐶 ∈ (ACS‘𝑋) ∧ 𝑌 ⊆ 𝒫 𝑋 ∧ (toInc‘𝑌) ∈ Dirset) → (𝐹 𝑌) = (𝐹𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  ∀wral 2907  Vcvv 3189   ⊆ wss 3559  𝒫 cpw 4135  ∪ cuni 4407  dom cdm 5079   “ cima 5082  ‘cfv 5852  Moorecmre 16174  mrClscmrc 16175  ACScacs 16177  Dirsetcdrs 16859  toInccipo 17083 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-tset 15892  df-ple 15893  df-ocomp 15895  df-mre 16178  df-mrc 16179  df-acs 16181  df-preset 16860  df-drs 16861  df-poset 16878  df-ipo 17084 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator