![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > bcval4 | Structured version Visualization version GIF version |
Description: Value of the binomial coefficient, 𝑁 choose 𝐾, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.) |
Ref | Expression |
---|---|
bcval4 | ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfzle1 12382 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 0 ≤ 𝐾) | |
2 | 0re 10078 | . . . . . . . . . 10 ⊢ 0 ∈ ℝ | |
3 | elfzelz 12380 | . . . . . . . . . . 11 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℤ) | |
4 | 3 | zred 11520 | . . . . . . . . . 10 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ∈ ℝ) |
5 | lenlt 10154 | . . . . . . . . . 10 ⊢ ((0 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) | |
6 | 2, 4, 5 | sylancr 696 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → (0 ≤ 𝐾 ↔ ¬ 𝐾 < 0)) |
7 | 1, 6 | mpbid 222 | . . . . . . . 8 ⊢ (𝐾 ∈ (0...𝑁) → ¬ 𝐾 < 0) |
8 | 7 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝐾 < 0) |
9 | elfzle2 12383 | . . . . . . . . 9 ⊢ (𝐾 ∈ (0...𝑁) → 𝐾 ≤ 𝑁) | |
10 | 9 | adantl 481 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → 𝐾 ≤ 𝑁) |
11 | nn0re 11339 | . . . . . . . . 9 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
12 | lenlt 10154 | . . . . . . . . 9 ⊢ ((𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) | |
13 | 4, 11, 12 | syl2anr 494 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → (𝐾 ≤ 𝑁 ↔ ¬ 𝑁 < 𝐾)) |
14 | 10, 13 | mpbid 222 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ 𝑁 < 𝐾) |
15 | ioran 510 | . . . . . . 7 ⊢ (¬ (𝐾 < 0 ∨ 𝑁 < 𝐾) ↔ (¬ 𝐾 < 0 ∧ ¬ 𝑁 < 𝐾)) | |
16 | 8, 14, 15 | sylanbrc 699 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ (0...𝑁)) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾)) |
17 | 16 | ex 449 | . . . . 5 ⊢ (𝑁 ∈ ℕ0 → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → (𝐾 ∈ (0...𝑁) → ¬ (𝐾 < 0 ∨ 𝑁 < 𝐾))) |
19 | 18 | con2d 129 | . . 3 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ) → ((𝐾 < 0 ∨ 𝑁 < 𝐾) → ¬ 𝐾 ∈ (0...𝑁))) |
20 | 19 | 3impia 1280 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → ¬ 𝐾 ∈ (0...𝑁)) |
21 | bcval3 13133 | . 2 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ ¬ 𝐾 ∈ (0...𝑁)) → (𝑁C𝐾) = 0) | |
22 | 20, 21 | syld3an3 1411 | 1 ⊢ ((𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ (𝐾 < 0 ∨ 𝑁 < 𝐾)) → (𝑁C𝐾) = 0) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 382 ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℝcr 9973 0cc0 9974 < clt 10112 ≤ cle 10113 ℕ0cn0 11330 ℤcz 11415 ...cfz 12364 Ccbc 13129 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-i2m1 10042 ax-1ne0 10043 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-xr 10116 df-le 10118 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-bc 13130 |
This theorem is referenced by: bc0k 13138 bcn1 13140 bcpasc 13148 hashf1 13279 binomfallfaclem2 14815 ram0 15773 srgbinomlem3 18588 srgbinomlem4 18589 basellem2 24853 bcmono 25047 cusgrsizeindb1 26402 altgsumbcALT 42456 |
Copyright terms: Public domain | W3C validator |